
FSA Modernization Partner
United States Department of Education
Federal Student Aid

Integrated Technical Architecture
Release 3.0 Technical Specification

Task Order #69
Deliverable # 69.1.3

Version 3.0

June 03, 2002

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 2

Table of Contents
1 CHANGE LOG..5

2 EXECUTIVE SUMMARY ..6
2.1 INTRODUCTION ...6
2.2 DESCRIPTION OF SECTIONS ..7
2.3 APPROACH ..7
2.4 PURPOSE ...7
2.5 SCOPE ...7
2.6 ASSUMPTIONS ...7
2.7 INTENDED AUDIENCE ..8

3 FUNCTIONAL OVERVIEW..9

3.1 WEB CONVERSATION FRAMEWORK...9
3.2 OBJECT POOLING FRAMEWORK ...9
3.3 USER SESSION ...9
3.4 FILE TRANSFER PROTOCOL ...10
3.5 CONFIGURATION ...10
3.6 XML HELPER ...11
3.7 JSP TAG LIBRARY FRAMEWORK ...11
3.8 SCHEDULER ..12
3.9 WEB SERVICES..12

4 DETAILED DESIGNS ..13

4.1 WEB CONVERSATION FRAMEWORK...13
4.1.1 Purpose ..13
4.1.2 System Overview...13
4.1.3 Design Considerations..14
4.1.4 System Architecture ..15
4.1.5 Detailed System Design ..18
4.1.6 Class Diagram..25
4.1.7 Sequence Diagram..26
4.1.8 References ..27

4.2 OBJECT POOLING FRAMEWORK ...28
4.2.1 Purpose ..28
4.2.2 System Overview...28
4.2.3 Design Considerations..29
4.2.4 System Architecture ..29
4.2.5 Detailed System Design ..30
4.2.6 Class Diagram..36
4.2.7 Sequence Diagram..37
4.2.8 References ..38

4.3 SESSION FRAMEWORK...39
4.3.1 Purpose ..39
4.3.2 System Overview...39
4.3.3 Design Considerations..39
4.3.4 System Architecture ..40
4.3.5 Detailed System Design ..43

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 3

4.3.6 Class Diagram..48
4.3.7 Sequence Diagram..49
4.3.8 Data Model...50
4.3.9 WebSphere Session Manager Configuration..51
4.3.10 References ..53

4.4 FTP FRAMEWORK ...54
4.4.1 Purpose ..54
4.4.2 System Overview...54
4.4.3 Design Considerations..55
4.4.4 System Architecture ..56
4.4.5 Detailed System Design ..57
4.4.6 Class Diagram..65
4.4.7 Sequence Diagrams ..66
4.4.8 References ..67

4.5 CONFIGURATION FRAMEWORK ...68
4.5.1 Purpose ..68
4.5.2 System Overview...68
4.5.3 Design Considerations..69
4.5.4 System Architecture ..70
4.5.5 Detailed System Design ..72
4.5.6 Class Diagram..84
4.5.7 Sequence Diagram..85
4.5.8 Data Model...86
4.5.9 References ..87

4.6 XML HELPER ...88
4.6.1 Purpose ..88
4.6.2 System Overview...88
4.6.3 Design Considerations..90
4.6.4 System Architecture ..91
4.6.5 Detailed System Design ..95
4.6.6 Class Diagrams ..98
4.6.7 Sequence Diagrams ..101
4.6.8 References ..104

4.7 JSP TAG LIBRARY...105
4.7.1 Purpose ..105
4.7.2 System Overview...105
4.7.3 Design Considerations..106
4.7.4 Detailed Design ..106
4.7.5 References ..117

4.8 SCHEDULER ..118
4.8.1 Purpose ..118
4.8.2 System Overview...118
4.8.3 Design Considerations..119
4.8.4 System Architecture ..120
4.8.5 Detailed System Design ..121
4.8.6 Class Diagrams ..125
4.8.7 Sequence Diagrams ..126
4.8.8 Reference..127
4.8.9 Jar Files ...128

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 4

4.8.10 FSASchedule Example ..128
4.9 WEB SERVICES..129

4.9.1 Overview ..129
4.9.2 Benefits...129
4.9.3 Technical Architecture..130
4.9.4 Design Considerations..134
4.9.5 System Architecture ..135
4.9.6 Sequence Diagram..137
4.9.7 References ..138

APPENDIX A – ITA RCS R2.0 AND FSA APPLICATIONS MATRIX...139

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 5

1 Change Log

Suggested
Changes/Comments

Page Author Date Change
Made
Y/N

Comment

Added Change Log and
made modifications
based on IV&V feedback

12-130 Wayne
Chang

05/24/2002 Y Version 2.0

Updated Change Log
and made modifications
based on IV&V feedback

7 - 130 Roshani
Bhatt

06/03/2002 Y Version 3.0

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 6

2 Executive Summary

2.1 Introduction
The Integrated Technical Architecture (ITA) Release 3.0 (R3.0), like its previous releases,
provides the Department of Education’s Federal Student Aid (FSA) enterprise with a
more robust core architecture for its application and production efforts. In addition to
providing FSA’s application teams with a core set of products and Subject Matter
Expert (SME) support, ITA R3.0 will provide an additional set of Java 2 Enterprise
Edition (J2EE) application architecture Reusable Common Services (RCS). The ITA
Release 2.0 Strategic Assessment of the FSA applications and their usage of ITA R2.0
RCS, identified reusable common services as a means of providing significant value to
FSA Java development efforts.

The first release of ITA RCS was well received and recognized as a valuable
contribution towards Java application development efforts. During ITA R2.0 strategic
assessment interviews, ITA RCS 2.0 received exceptionally positive feedback from the
application development teams. To continue providing value added services, the ITA
in its third release is offering additional RCS to FSA for its current and future
developments initiatives.

This document provides an overview of designs of the ITA R3.0 Reusable Common
Services. The reusable common services provide FSA with an additional set of Java
services that may be used across the enterprise to handle Java application architecture
functions.

The ITA R3.0 Technical Specification provides information on the following nine ITA
reusable common services:

• Web Conversation

• Object Pooling

• User Session

• File Transfer Protocol (FTP)

• Configuration

• XML Helper

• JSP Tag Library

• Scheduler

• Web Services

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 7

2.2 Description of sections
The ITA R3.0 Technical Specification is divided into the following sections:

• Section 1 provides an overview of the document

• Section 2 provides a functional overview of the ITA Release 3.0 reusable common
services

• Section 3 provides detailed designs for each reusable common service

• Appendix A provides a matrix that details the current and potential usage of reusable
common services by FSA’s applications

2.3 Approach
The common services are built based on open technology and J2EE architecture. The
ITA team leveraged previous Accenture and industry experience to design and develop
a set of application common services that specifically address FSA enterprise Java
application requirements.

2.4 Purpose
This document provides an overview, feature list, and detailed technical designs for the
ITA RCS frameworks. These frameworks compose a suite of frameworks provided for
use in FSA applications by the ITA 3.0 initiative. The goal of the ITA initiative is to
promote code reuse, standardization of development, ease of application maintenance,
and application of best practices across all FSA application development projects.

2.5 Scope
The ITA Release 3.0 Technical Specification provides design information on the
components that directly compose the ITA RCS frameworks. While the frameworks
make use of many J2EE features and packages, such as JDBC, JSP, Servlets, and XML,
the Technical Specification does not cover these topics. For additional information on
these topics, please refer to the Sun Java website (http://www.javasoft.com) or
applicable Java programming guides.

2.6 Assumptions
The RCS were built and tested in the ITA R3.0 environment. The following table
summarizes the ITA R3.0 products and versions with which the RCS components
interface. While the RCS services were built using these product versions, the services
were built in accordance with J2EE standards and to support product upgrades.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 8

Function Product ITA 3.0

Operating System Sun Solaris v. 2.6

HTTP Server IBM HTTP Server v. 1.3.12.2

Java Application Server WebSphere Application Server
Advanced Edition

v. 3.5.3

Search Engine Autonomy Knowledge Server v. 2.2

Database Oracle 8i v. 8.1.7

Java Development Tool Visual Age for Java Enterprise
Edition

v. 3.5.3

2.7 Intended Audience
The ITA R3.0 Technical Specification is intended for ITA and FSA application
programmers who need to understand the RCS frameworks in order to troubleshoot or
enhance the applications. The document is not intended as a programmer’s guide for
how to use the frameworks in developing applications. A user’s guide detailing how to
use the RCS frameworks will be provided in a separate document.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 9

3 Functional Overview
This section provides a functional overview of the ITA Release 3.0 RCS.

3.1 Web Conversation Framework
The purpose of the ITA Web Conversation framework is to provide a standard for
developers and designers to apply the Model View Controller (MVC) design pattern for
architecting and developing Java web-based applications. This framework allows
different tiers of the web application to be created independently of one another,
provides the ability to update the static content displayed without updating and
recompiling code, and facilitates internationalization of web pages. The Web
Conversation Framework was developed based on the Jakarta Struts Framework.

There are several benefits to using Struts as the basis of the Web Conversation
framework:

• Full separation of application flow, business objects, and presentation documents

• An existing web application structure that enables developers to focus on
development of the application rather than the flow logic

• Simplified handling of user-provided form data

• Built-in configurable support for internationalization

3.2 Object Pooling Framework
Object pooling allows the reuse of instantiated Java objects – i.e., database connection
pool. Objects that are used repeatedly throughout the life of a Java application can
potentially benefit from this framework. Using the framework allows applications to
create and manage pools of objects. Objects in the pool are retrieved when called and
returned to the pool at the end of their usage. The framework allows application
development teams to take advantage of object pooling to increase application
performance.

Object Pooling Framework provides the following features:

• Managed object pools for easy retrieval and usage of objects

• Efficient use of system resources to increase application performance

• First In First Out (FIFO) object retrieval mechanism

3.3 User Session
The User Session simplifies, standardizes, and extends the use of user session/context
information within the J2EE standard. The session wrapper class provides a common

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 10

way to access session information, decouples session information from the request,
HTTP session, and application J2EE session contexts, and wraps WebSphere session
extension classes. The Session Framework provides the best practices and higher
performance implementation for applications requiring storage of large amounts of
session information.

The session framework will provide for the following services on both the client-side
and server-side contexts:

• Providing a common interface to all HTTP variables (request, cookie, session)
• Storing temporary data that needs to persist across web pages

3.4 File Transfer Protocol
The purpose of the File Transfer Protocol (FTP) framework is to provide a standard
interface to applications for transferring files. The framework allows applications to
create FTP connections and execute a variety of FTP commands (which include the
upload and download of files). A graphical user interface allows applications to easily
add FTP functionality.

The FTP Framework provides the following features:
• Active and Passive transfer modes

• Implements javax.net.ssl package for secure file transfer

• User friendly graphical user interface

• APIs to be called within application code

3.5 Configuration
The configuration framework provides a standard for setting up and accessing
application-wide configuration data. The framework allows configuration information
to be loaded from properties files, XML files, or database tables. The configuration
framework abstracts the representation of configuration data (the format in which they
are written) so that if the files change formats, only the configuration framework will
require coding changes – no coding changes will be needed within the application or
architecture code.

The Configuration Framework is implemented using the Accenture’s General and
Reusable Netcentric Delivery Solution (GRNDS) configuration framework. The
GRNDS code has been extended to meet FSA application development requirements.
Specifically, the framework has been extended to:

• Use a static initializer to load the configuration files, instead of using the GRNDS
bootstrap framework

• Support configuration input from database tables

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 11

3.6 XML Helper
The XML Helper framework will provide two functionalities. First, the XML
framework will provide a parsing function for reading property files in XML format
and setting up parameters for applications. Second, the framework will provide
conversion function between XML and Java objects. With this framework, XML that
describes a Java object can be constructed from the particular XML and a Java object can
be mapped to an XML representation.

3.7 JSP Tag Library Framework

The JSP Tag Library Framework provides a collection of commonly used JSP custom tag
libraries for application developers to implement. The JSP tag library framework is
comprised of JSP Tags from the Apache Struts framework, external sources, and custom
developed libraries. A JSP tag allows developers to package a commonly used set of
code in an easy, reusable code library. Once built, the actual code library provides a
simple set of custom tags that even a non-Java developer can use.

The JSP Tag Library offers the following taglibs:

• Jakarta Struts Bean Taglib - contains custom JSP used to define new beans from a
variety of sources and to render a bean or bean property to the output response

• Jakarta Struts HTML Taglib - contains JSP custom tags useful in creating

dynamic HTML user interfaces, including input forms

• Jakarta Struts Logic Taglib – contains tags useful in managing conditional
generation of output text, looping over object collections for repetitive generation
of output text, and application flow management

• Jakarta Struts Template Taglib - contains tags that are useful in creating dynamic

JSP templates for pages that share a common format

• Jakarta DateTime Taglib - contains tags that can be used to handle date and time
related functions

• Jakarta I18N Taglib - contains tags that help manage the complexity of creating

internationalized web applications

• Jakarta Input Taglib – contains tags that present HTML <form> elements that are
tied to the ServletRequest that causes the current JSP page to run. Can be used to
pre-populate form elements with prior values that the user has chosen or with
default values for the first time web page visitors

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 12

• Log Taglib – contains tags that embed logging calls in JSP using the Logging

Framework

• Jakarta Page Taglib – contains tags that can be used to access all of the
PageContext information of a JSP page within the context of the current page

• Jakarta XSL Taglib – contains tags used to process XML documents with an XSL

stylesheets and inserts them in place.

• XTags Taglib – contains custom tags for working with XML and implements an
XSLT-like language allowing XML to be styled and processed from directly
within a JSP

3.8 Scheduler
The Scheduler provides the capability for applications to execute pre-determined tasks
automatically and periodically. The Scheduler framework will be developed to meet
demand of FSA application teams. Scheduled emailing, FTP and database maintenance
functions are examples for which applications routinely perform either manually or by
Unix cron jobs. Setting Unix cron jobs and Unix scripts to execute Java classes can be
confusing and unreliable. The Scheduler provides a user-friendly interface and the
mechanism for scheduling Java-based tasks.

3.9 Web Services
Consists of SOAP, XML, and UDDI technologies to enable web services. Web Services
are self-contained, self-describing, modular applications that can be published, located,
and invoked across the Web. The invocation is done using a set of low overhead, open
standard network and application protocols (i.e., UDDI, SOAP, XML, etc). The Web
Services framework describes the technical architecture of a Web Service. It also
provides an implementation for the SOAP protocol put forth by the World Wide Web
Consortium (W3C).

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 13

4 Detailed Designs

This section provides detailed designs for the ITA Release 3.0 RCS frameworks.

4.1 Web Conversation Framework

4.1.1 Purpose

The purpose of the ITA Web Conversation framework is to provide a standard for
developers and designers to apply the MVC (Model View Controller) design pattern for
developing web applications. This framework allows different tiers of the web
application to be created independently of one another, provide the ability to update
the static strings displayed without updating and recompiling code, and facilitates
internationalization of web pages.

4.1.2 System Overview

The Web Conversation framework is based on the Jakarta Struts. The Struts framework
enables developers to combine the use of JavaServer Pages (JSP) and Java Servlets to
create dynamic pages. Struts is part of the Jakarta Project, sponsored by the Apache
Software Foundation (http://jakarta.apache.org/). The Apache Software Foundation
provides support for the Apache community of open-source software projects. The
Apache projects are characterized by a desire to create high quality software that leads
the way in its field, an open and pragmatic software licensing and a collaborative,
consensus based development process.

Struts is an open source framework that takes advantage of the MVC design pattern to
enable developers to focus on one portion of the process without having to know details
of how the other components work. The Struts framework provides many objects that
facilitate the fundamental aspects of MVC, while allowing the developer to extend the
design and functionality further as required by the application requirements. Struts
allows default information to be configured in a file that can be updated at any time
versus having to use static constants in the code.

The MVC design pattern is a technique used to separate business logic/state (the
Model) from User Interface (the View) and program progression/flow (the Control).
The user is presented with the View, which in a web-based application can be an HTML
page or an image. The View interacts with the Controller, which is responsible for the
flow of the program and processes updates from the Model to the View and vice versa.
The Model represents the business logic or state (data in the system) and is usually

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 14

defined as a Java object. In a real-world situation, the View can be thought of as a TV
Screen, the Model is the VCR/DVD player, and the Controller is the remote control.

Struts implements the three major components found in the MVC design pattern. Its
primary function is to facilitate the use of JavaServer Pages for generating the HTML,
while the Servlets are used to mediate the control flow using the MVC design pattern.

There are several benefits to using Struts as the basis of the Web Conversation
framework:

• Full separation of application flow, business objects, and presentation documents

• An existing web application structure that enables developers to focus on
development of the application

• Simplified handling of user-provided form data

• Built-in configurable support for internationalization

• Lower development cost due to minimum technical requirements to develop
view, which can be constructed in HTML

4.1.3 Design Considerations

4.1.3.1 Assumptions and Dependencies

The Web Conversation framework will function in a J2EE application server
environment. The current distribution of Struts used is Struts 1.0.1. As the current
production server for FSA is IBM’s WebSphere Application Server (WAS) v. 3.5, the
framework will be compiled using its required JDK version 1.2.2. It is also compatible
with the current JavaServer Pages (1.1) and Java Servlet (2.2) specifications for this
server. It is built and tested on the Sun Solaris 2.6 and HP-UX 11.0 operating systems.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 15

While this framework will be built using these product versions, it will be built in
accordance with J2EE standards and to support product upgrades.

4.1.3.2 Goals and Guidelines

The Web Conversation framework will provide a robust framework that can easily be
utilized by any FSA development team building web-based applications using Java
Server Pages and Java Servlets. The foundation of the Web Conversation framework is
based on Struts, which supports separation of application flow (Controller), business
logic (Model) and presentation (View). This separation allows developers to build the
programming logic while web designers concentrate on creating the front-end
presentation pages.

4.1.3.3 Development Methods

This framework will be used as the basis for developing all web-based applications for
the FSA project. The standard class and sequence diagrams are provided in this
document in order to illustrate the framework’s structure. These diagrams should
assist developers who are unfamiliar with this framework.

4.1.4 System Architecture

The following sections will illustrate the Model-View-Controller (MVC) design pattern
and define the MVC components as used in the web conversation framework.

Figure 1: MVC Design Pattern (Model 2)

There are three main components to Struts:

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 16

1. View – The View component in Struts is represented by JavaServer Pages and
HTML. The View is completely independent of the underlying data model and
business logic, allowing web authors to modify the presentation of content
without affecting the underlying code. Struts also supports internationalization.
It allows a web application to be rendered in different languages through the use
of the application resources.properties file.

2. Model – The Model in Struts is usually defined as a Java object, or bean. Model
classes should be coded independently of the Struts framework to promote
maximum code reuse by other applications. The Model typically represents the
underlying data and is independent of the presentation (view).

� The Struts framework also provides some default Model components,
most important of which is ActionForm. Struts ActionForms ensure the
form bean is created when needed and the POST request from the submit
action directly updates the form object with the inputted values, and
ensures any included validation is run against the data. The ActionForm
also ensures the form bean is passed to a Controller object. Struts will
only handle Models in an automatic fashion if the
org.apache.struts.action.ActionForm Class is extended

3. The Controller – The controller is the switchboard of MVC in Struts. It directs
the user to the appropriate Views and provides the View with the correct Model.
The task of directing users to appropriate Views is called “mapping”. In Struts,
the Controller class, ActionServlet, uses a configuration file called struts-
config.xml to read in mapping data called ActionMapping. By reading this data,
ActionServlet class can match the incoming Uniform Resource Identifier (URI)
against a set of ActionMappings to find an Action class that handles the request.
This process is described in the following diagram:

Figure 2: Struts Framework

In the Figure 2 above, ActionServlet reads the struts-config.xml file that contains the
mapping of actions to determine which object to call for a given Action request. The file

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 17

is read at startup of the application and the relationships are stored in memory for
optimal performance. ActionServlet responds to HTTP Requests and direct each
request the appropriate Action. Actions provide further direction to the business logic
and will update and validate the ActionForm - if necessary. The JSP accesses the
updated ActionForm and the output is sent as the HTTP Response to the browser.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 18

4.1.5 Detailed System Design

4.1.5.1 Component Overview

The figure below illustrates the Struts framework, the interaction between the various
components and demonstrates how the Web Conversation framework maps into the
MVC design pattern.

Figure 3: The Struts Framework in MVC

In the Struts framework, the client browser sends an HTTP Request to the Controller.
The ActionServlet Controller component reads from the struts-config.xml for the Action
to call, and from the Application resources.properties file for any strings that are pre-
defined, and is also used for internationalization (i18n). The ActionServlet then passes
control to the Action Controller listed in the struts-config.xml file. The Action calls the
ActionForm (the Model) component, which process the business logic of the application
and performs any necessary updates and validation. The Model will return an error or
return control directly to the View object.

4.1.5.2 Component Definitions

4.1.5.2.1 JavaServer Pages

JavaServer Pages (JSP) serve as the View component in the Struts framework. The JSP
contain static HTML and offers authors the ability to insert dynamic content based on
the interpretation (at page request time) of special action tags. Struts includes a custom

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 19

tag library that facilitates creating user interfaces that interact with ActionForm beans
(part of the Model component).

The example below is of a JSP login form which uses JSP Taglibs:

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<html:html locale="true">
<head>
<title><bean:message key="logon.title"/></title>
<html:base/>
</head>
<body bgcolor="white">
<html:errors/>

<html:form action="/logon.do" focus="username">
<table border="0" width="100%">
 <tr>
 <th align="right">
 <bean:message key="prompt.username"/>
 </th>
 <td align="left">
 <html:text property="username" size="16" maxlength="16"/>
 </td>
 </tr>
 <tr>
 <th align="right">
 <bean:message key="prompt.password"/>
 </th>
 <td align="left">
 <html:password property="password"
 size="16" maxlength="16"/>
 </td>
 </tr>
 <tr>
 <td align="right">
 <html:submit property="submit"
 value="Submit"/>
 </td>
 <td align="left">
 <html:reset/>
 </td>
 </tr>
</table>
</html:form>
</body>
</html:html>

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 20

4.1.5.2.2 Java Object

A Java Object (typically a Java Bean) usually represents the Model component in the Struts
framework. The bean will represent details of the internal state of the system. The Model is
made up of the abstract class ActionForm, which is a standard JavaBean with Get and Set
methods that are used to access its state. All form classes that are automatically updated and
validated within Struts extend org.apache.struts.action.ActionForm.

The following code is an example of an ActionForm bean:

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.upload.FormFile;

public class LogonForm extends ActionForm {
 protected String userName;
 protected String password;

 public void setUserName(String userName) {
 this.userName = userName;
 }
 public void setPassword(String password) {
 this.password = password;
 }
 //There would also be getters for these properties
 public void getUserName(String userName) {
 this.userName = userName;
 }
 public void getUserPassword(String password) {
 this.password = password;
 }
}

4.1.5.2.3 Servlets

The Controller is made up of two Struts classes, ActionServlet and Action. The
ActionServlet class maps requests to specific Actions and is configured by defining a set
of ActionMappings. The ActionServlet interacts with the Model, encapsulates the
business logic, interprets the outcome, and dispatches control to the View to create the
response.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 21

This is a Controller example of an Action:

public class LogonAction extends Action {

 public ActionForward perform(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response) {

 LogonForm myForm = (LogonForm) form;

 if (myForm.getUserName().equals(“john”) &&
 myForm.getPassword().equals(“doe”)) {
 //return a forward to our success page
 return mapping.findForward(”success”);
 } else {
 ActionErrors errors = new ActionErrors();
 errors.add("password",
 new ActionError("error.password.required"));
 this.saveErrors(errors); //Action implements this method
 //go back to the page that made the request
 return (new ActionForward(mapping.getInput()));
 }

 }
}

4.1.5.2.4 web.xml

The web.xml file is the standard web application deployment descriptor, which must
contain a Servlet definition for the Struts Action Servlet. The web.xml file is read when
the JSP container starts. An example of a web.xml file is shown here:

<web-app>
 <servlet>
<!--
Declare the O’ReillyAction servlet to be of type ActionServlet from the framework. Include the
configuration file as defined in the config param. Set the debug level to 2 with a detail of 2 when loading
the servlet. Create 2 instances.
-->
 <servlet-name>OreillyActionServlet</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 22

 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>
<!--
 All incoming requests that end in .action, send to the OreillyActionServlet.
-->
<servlet-mapping>
 <servlet-name> OreillyActionServlet </servlet-name>
 <url-pattern>*.action</url-pattern>
 </servlet-mapping>
<!--
 Send initial requests to the login page for this application
-->
<welcome-file-list><welcome-file>login.jsp</welcome-file></welcome-file-list>
<!--
 Make all of the necessary related Struts JSP custom tag libraries
available and define where to find them.
-->
 <taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
 </taglib>
</web-app>

4.1.5.2.5 struts-config.xml

The main control file in the Struts framework is the struts-config.xml file. This file
defines action mappings. The XML structure is defined by the struts-config Document
Type Definition (DTD) file and can be found in the /docs/dtds subdirectory of the
framework’s installation root directory. The DTD contains the list of legal elements that
can be used in the XML document. The top-level element is struts-config and it consists
of the following elements: Data-source, form-bean, global-forwards, and action-
mappings.

This is a partial example of a struts-config.xml file, other Actions identified in the DTD
have been left out:

<struts-config>
 <form-beans>
 <form-bean
 name="logonForm"
 type="org.apache.struts.example.LogonForm" />
 </form-beans>

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 23

 <global-forwards
 type="org.apache.struts.action.ActionForward" />
 <forward name="logon" path="/logon.jsp"
 redirect="false" />
 </global-forwards>
 <action-mappings>
 <action
 path="/logon"
 type="org.apache.struts.example.LogonAction"
 name="logonForm"
 scope="request"
 input="/logon.jsp"
 unknown="false"
 validate="true" />
 </action-mappings>
</struts-config>

4.1.5.3 Internationalization

Internationalization is achieved through the use of PropertyResourceBundles, which are
classes that support String data. Instead of creating a class for each language supported
by the application, text files can be used. The resource property file contains locale-
specific set of static strings used for internationalization.

The properties file contains strings in the form of a unique key-value pair. A properties
file can be created for each supported locale with a different International Organization
for Standardization (ISO) language code value. Using this method, the same key
referenced in the application code can be used in each locale file but the values can be
different depending on the locale.

In the web.xml file, the initialization parameter “application” is used to reference the
name and location of the resource files. In the example web.xml file below, when the
ActionServlet is loaded it will read its application parameter to determine that it should
load its string resources from the MyResources.properties file.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 24

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>MyResources</param-value>
 </init-param>
</servlet>

The ActionServlet will also determine the language the client is using. If the language
used by the client is different from the default, the ActionServlet looks up the two-
character ISO language code and tries to look for a properties file by appending the ISO
code to the name of the class.

For example, if the locale of the client is French and the default is English, the
ActionServlet would first look for the file in French (MyResources_fr.properties). If it is
not able to find the file in French, it then looks for the file in English
(MyResources.properties).

 French: MyResources_fr.properties file:
helloworld.title=Allô monde!
menu.file=Dossier
menu.file.open=Ouvrir
menu.file.close=Fermer
menu.file.exit=Sortie
menu.edit=Rédiger
menu.edit.copy=Copier
menu.edit.paste=Pâte

Default: MyResources.properties file:
helloworld.title=Hello World!
menu.file=File
menu.file.open=Open
menu.file.close=Close
menu.file.exit=Exit
menu.edit=Edit
menu.edit.copy=Copy
menu.edit.paste=Paste

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 25

4.1.6 Class Diagram

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 26

4.1.7 Sequence Diagram

1) The calling application, typically a JSP
will call the ActionServlet and pass the
request and response.

2) The ActionServlet will determine the
path component from the request to
be used to select an ActionMapping to
dispatch.

3) Sets the default content type for all
responses.

4) Identify and return the mapping
associated with the request and send
it to the ActionMappings class.
ActionMappings will return the set of
paths for mappings defined in this
collection.

5) Retrieve and return the ActionForm
bean associated with this mapping.
The ActionServlet then obtains the
attribute information from the request.

6) Populate the properties of the
specified ActionForm from the request
parameters included with this request.

7) Call the validate() method of the
specified ActionForm, and forward
back to the input form if there are any
errors.

8) The mapping is passed to the
perform() method of the action class
itself, enabling access to this
information directly.

9) Process a forward requested by this
mapping, if any.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 27

4.1.8 References

• Struts Homepage

http://jakarta.apache.org/struts

• Struts Documentation - Apache Struts Framework (Version 1.0)

http://jakarta.apache.org/struts/api-1.0/index.html

• Struts, an open-source MVC implementation

http://www-106.ibm.com/developerworks/java/library/j-struts/

• Strut Your Stuff with JSP Tags: Use and extend the open source Struts JSP tag library

http://www.javaworld.com/javaworld/jw-12-2000/jw-1201-struts.html

• Introduction to Jakarta Struts Framework – Parts 1 – 3

http://www.onjava.com/lpt/a//onjava/2001/09/11/jsp_servlets.html
http://www.onjava.com/pub/a/onjava/2001/10/31/struts2.html
http://www.onjava.com/pub/a/onjava/2001/11/14/jsp_servlets.html

• The Struts Framework’s Action Mappings Configuration File

http://www.informit.com/content/index.asp?product_id={0917F29F-56D8-4B25-
9C67-211EC945BBAB
(Requires creating a free informit.com account.)

• Building a Web Application: Strut by Strut

http://husted.com/about/scaffolding/strutByStrut.htm

• Java Developer’s Journal

http://www.sys-con.com/java/article.cfm?id=1175

• “Introduction to MVC and the Jakarta Struts Framework,” Craig W. Tataryn

http://www.computer-programmer.org/articles/struts/

• “J2EE FrontEnd Technologies: A Programmer’s Guide to Servlets, JavaServer Pages,
and Enterprise JavaBeans, ” Lennart Jörelid

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 28

4.2 Object Pooling Framework

4.2.1 Purpose

The purpose of the object pooling framework is to provide a standard to simplify, and
extend the use of object pooling within the J2EE standard. The pooling framework will
provide a common way for developers to re-use objects from a pool of available objects.
This lessens the overhead on the server every time an object is created or destroyed.
Objects are instantiated in a pool upon startup and remain available to applications in
the resource pool. When a client requires the use of the object, the object can be
obtained from the pool and released back to the pool when it is no longer needed. This
will increase the load time at startup but will decrease the time needed to obtain an
object, thereby minimizing garbage collection activity.

4.2.2 System Overview

The pooling framework is created using the Java programming language. The pooling
framework provides a mechanism for developers to access a common resource pool of
objects rather than repeatedly instantiating and destroying commonly used objects. The
framework creates one common interface for application developers to create the pool,
manage objects in the pool, obtain objects from the pool, and release objects back to the
pool. The framework allows developers to create ‘pool managers’ that can each track
multiple pools of different object types.

The FSAPoolMgr class is the main class that application developers will use to create
pools and to obtain and release objects from the specified pool. The Hashtable used by
the pool manager class will be able to track the different pools available.

Application developers extend the abstract FSAPoolableObject class to create new pool
types that can be pooled. If an object needs to be added to a pool, the class has to
extend this class to become poolable.

Factory classes must implement the FSAPoolableFactory interface in order to create
new objects to be included in the pool using the Component Factory framework.

The FSAObjectPool class builds a pool to hold the specified object that can be pooled.
The user specifies the minimum and maximum size of the pool along with the timeout
period in a configuration file. The amount of time to wait for an object from the pool
before timing out is also defined in the constructor. The objects in the pool will be
accessible through a queue. The first available object in the pool queue is provided to
the first application waiting for an object from the pool in a ‘First in, first out’ (FIFO)
pattern.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 29

The FSAPoolException class will provide exception catching and handling for the object
pooling framework. This class extends the existing RCS Exception Handling
framework.

4.2.3 Design Considerations

4.2.3.1 Assumptions and Dependencies

The pooling framework will function in a J2EE compliant application server
environment. As the current production servers for FSA are running IBM’s WAS v.
3.5.3 and v. 3.5.5, the framework will be compiled using its required JDK version 1.2.2 –
the version included within the ITA Application Server WAS 3.5. It will also work with
the current Java Server Pages (1.1), Java Servlet (2.2), and Java Database Connectivity
(2.0) specifications for this server. It will be fully tested with both the Sun Solaris 2.6
and the HP-UX 11.0 operating systems. While this framework will be built using these
product versions, it will be built in accordance with J2EE standards and to support
product upgrades.

4.2.3.2 Goals and Guidelines

The goal of the pooling framework is to provide a simple yet robust framework that can
be easily utilized by any FSA application team developing in a Java environment. The
pooling framework provides the developer with the ability to access a shared pool of
instantiated objects, which improves application performance.

Creating an object pool is recommended if the application frequently creates and
destroys large amount of objects in order to minimize overhead. This is the case with
accessing a database; many connection objects are created and destroyed. Object
pooling is not recommended if the same object type is not created and destroyed
repeatedly.

4.2.3.3 Development Methods

This framework will be developed using general object-oriented software development
techniques. The standard class and sequence diagrams are provided in this document.
These diagrams should assist developers who are unfamiliar with this framework.

4.2.4 System Architecture

4.2.4.1 Overview

The pooling framework provides the ability for application developers to access objects
from a pool of available objects rather than constantly creating and destroying objects.
The initial load time is longer because all of the objects are instantiated on startup.
There is no additional load time as each process does not need to instantiate a new

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 30

object, and there is reduced garbage collection since objects are being returned to a pool
instead of being destroyed.

4.2.4.2 Subsystem Architecture: FSAPoolMgr

Application developers call the FSAPoolMgr class to create new pools and to track
existing pools.

4.2.4.3 Subsystem Architecture: FSAPoolableResource

The Abstract class is extended by developers to make the new class poolable. This class
ensures that the new class type will have the ability to release the object and to test if the
object is alive.

4.2.4.4 Subsystem Architecture: FSAPoolableFactory

Creates new objects to be added to a pool using the Component Factory framework.

4.2.4.5 Subsystem Architecture: FSAObjectPool

Class used to create the object pool with the minimum number of objects defined.
Places the objects in a FIFO queue.

4.2.4.6 Subsystem Architecture: FSAPoolException

FSAPoolException is thrown when an error is encountered in the pooling framework
and uses the Exception Handling framework.

4.2.5 Detailed System Design

4.2.5.1 Component Definitions

4.2.5.1.1 FSAPoolMgr

Class Name: FSAPoolMgr
Component: Pooling
Description: Public class
Package: gov.ed.fsa.ita.pooling
Superclass: Object

Attribute Type Description

Private:
m_poolListHash java.util.Hashtable Hashtable of the list of pools managed by this

instance.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 31

Con/Destructors Arguments

(Type, Name)
Description

FSAPoolMgr none The constructor method that creates the Hashtable

that the Pools are stored in.
The pool name is the key and the pool object is the

value.

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
createPool String poolName,

int minSize,
int maxSize,
int timeOutInterval,,
FSAPoolableObject pObj)

void
throws
FSAPoolException

Create a pool and store the pool
name and object into the
Hashtable.

getPooledObject String poolName FSAObjectPool
throws
FSAPoolException

Obtains a pool object from the
specified Hashtable based on the
provided pool name.

4.2.5.1.2 FSAPoolableFactory

Interface Name: FSAPoolableFactory
Component: Pooling
Description: Allows user-defined factory to create new object types that can be used in a pool will

implement this factory class.
Package: gov.ed.fsa.ita.pooling
Superinterface: None

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
createPoolableObject none FSAObjectPool

throws
FSAPoolException

This empty method ensures an
application developer uses this
class to create a new Pooled
Object.

4.2.5.1.3 FSAPoolableResource

Class Name: FSAPoolableResource
Component: Pooling
Description: This abstract class will be extended to create new class types that can be pooled.
Package: gov.ed.fsa.ita.pooling
Superclass: Object

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 32

Attribute Type Description

Private:

M_pool gov.ed.fsa.ita.pooling.FSAObjectReso
urce

Used to store the reference to the pool.

Con/Destructors Arguments
(Type, Name)

Description

FSAPoolableResource none This is the default constructor.

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Protected:

IsAlive none Boolean state Tests to see if the object is still
alive.

Public:

Release none void Returns the object back to the
pool from where it came.

makeObjectPoolable none void – throws
FSAPoolException

Makes the class into a class that
can be pooled.

4.2.5.1.4 FSAObjectPool

Class Name: FSAObjectPool
Component: Pooling
Description: This class creates the pool that objects are stored in.
Package: gov.ed.fsa.ita.pooling
Superclass: Object

Attribute Type Description

Private:
m_poolName String Name of the pool.
m_minSize int Initial and minimum size of the pool.
m_maxSize int Maximum size of the pool. Objects will not be

initialized and added to the pool beyond this
number.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 33

Attribute Type Description

m_timeOut int Setting for when timeout should occur if an object
in a pool is not immediately available.

• Set to -1 if there is no object, returns an error
immediately

• Set to 0 if wait indefinitely
• Any positive value greater than 0 is the

amount of time to wait in milliseconds
before a retry is attempted. Will be retried
three times using the specified wait time

m_poolSize int Value to hold the current size of the pool.
m_objectPool FSAPoolQueue The queue is used to hold the object pool and allow

a FIFO pattern to be applied to the use of the
objects in the pool.

m_requestQ edu.oswego.cs.dl.util.concurrent.F
IFOSemaphore

The Queue used to store requesting objects in.

m_retryAttempt int Number of retries to attempt before throwing an
exception.

Con/Destructors Arguments
(Type, Name)

Description

FSAObjectPool String name,
int minSize,
int maxSize,
int timeOut

Create a new pool with the default values.

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Protected:
destroy none void Destroys the object and

removes it from the pool and
queue if the object is no longer
alive.

Public:
getMaxValue none int Obtains the maximum value the

pool can hold currently.

getMinValue none int Obtains the minimum value the
pool can hold currently.

getRetryValue none int Obtains the current retry value.
setMaxValue int value void Sets the maximum value the

pool can hold.
setMinValue int value void Sets the minimum value the

pool can hold.
setRetryValue int value void Sets the number of retries that

should be attempted.
createNewObject none FSAPoolableObject

throws
FSAPoolException

Create a new instance of the
object and add it to the pool.

release FSAPoolableObject void Returns the object to the pool.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 34

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

getPooledObject none FSAPoolableObject
throws
FSAPoolException

Gets an object from the pool.

4.2.5.1.5 FSAPoolException

Class Name: FSAPoolException
Component: Pooling
Description: FSAPoolException will be thrown when errors are encountered while using the pooling

framework.
Package: gov.ed.fsa.ita.pooling
Superclass: gov.ed.fsa.ita.exception

Con/Destructors Arguments

(Type, Name)
Description

FSAPoolException none Default Constructor with no error message

provided.
FSAPoolException String errMsg Default Constructor with an error message.
FSAPoolException String errMsg, Throwable e Default Constructor with an error message and

Throwable.

4.2.5.1.6 FSAPoolQueue

Class Name: FSAPoolQueue
Component: Pooling
Description: This class stores the pool objects in a queue and uses a FIFO pattern to manage the use of

the object in the queue.
Package: gov.ed.fsa.ita.pooling
Superclass: Object

Attribute Type Description

Protected:
M_head FSAPoolQueue.Node The first entry in the queue.
M_tail FSAPoolQueue.Node The last entry in the queue.
M_getLock Object Synchronization target for poll/get operations.
M_putLock Object Synchronization target for put operations.

Con/Destructors Arguments

(Type, Name)
Description

FSAPoolQueue none Default constructor.

ITA Release 3.0

Technical Specification

Version 3.0 69 – 69.1.3 Page 35

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions Thrown)

Description

Public:
Get none FSAPoolableObject

throws
FSAPoolException

Obtains and removes the first
object from the head/front of the
queue.

Put FSAPoolableObject void Adds an object to the tail/end of
the queue.

Class Description

Node (private static) private static class declared within the

FSAPoolQueue class to act as a placeholder to
reference the next object in the queue.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 36

4.2.6 Class Diagram

4.2.6.1 Pooling Framework Class Diagram

FSAPoolMgr
m_poolListHash : Hashtable

FSAPoolMgr()
createPool()
getPooledObject()

FSAPoolableFactory

createPoolableObject()

FSAPoolableResource

FSAPoolableObject()
release()
makeObjectPoolable()
isAlive()

FSAObjectPool

m_poolName : String
m_minSize : int
m_maxSize : int
m_timeOut : int
m_poolSize : int
m_objectPool : FSAPoolQueue
m_requestQ : edu.oswego.cs.dl.util.concurrent.FIFOSemaphore
m_retryAttempt : int

FSAObjectPool()
getMaxValue()
getMinValue()
getRetryValue()
setMaxValue()
setMinValue()
setRetryValue()
createNewObject()
release()
getPooledObject()
destroy()

FSAPoolQueue

m_head : FSAPoolQueue.Node
m_tail : FSAPoolQueue.Node
m_getLock : Object
m_putLock : Object

FSAPoolQueue()
get()
put()

FSAPoolException

FSAPoolException()
FSAPoolException()
FSAPoolException()

SFAException

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 37

4.2.7 Sequence Diagram

4.2.7.1 Pooling Framework Sequence Diagram

Application FSAPoolMgr FSAObjectPool FSAPoolableFactory FSAPoolableResource FSAPoolQueue

1. FSAPoolMgr()

2. createPoolableObject
2.1. makeObjectPoolable()

3. createPool(poolName, minSize, maxSize, int timeOut, oType)

3.1. FSAObjectPool(poolName, minSize, maxSize, int timeOut, oType)

3.1.1. FSAPoolQueue(FSACreatePoolableResource)
3.1.1.1. put(FSACreatePoolableResource)

4. getPooledObject(poolName)

4.1. getPooledObject(poolName)
4.1.1. getPooledObject() 4.1.1.1. get()

5. release()
5.1. release(FSACreatePoolableObject)

5.1.1. put(FSACreatePoolableResource)

1. Call the FSAPoolMgr
constructor to create the
Hashtable.

2. User the factory class
to create a new poolable
object type. Make the
new object type
poolable.

3. Create a pool with
the minimum amount of
objects specified.
Create a queue and put
all pool objects in to the
queue.

4. Obtain an object
form the specified pool.

5. Release the object
back into the pool.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 38

4.2.8 References

• “Advanced Programming for the Java 2 Platform, “ Chapter 8 continued: Connection
Pooling

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/conpool
.html

• “Build your own ObjectPool in Java to Boost Application Speed,” Thomas E. Davis

http://www.javaworld.com/javaworld/jw-06-1998/jw-06-object-pool_p.html

• “Dive into Connection Pooling with J2EE,” Siva Visveswaran

http://www.javaworld.com/javaworld/jw-10-2000/jw-1027-pool.html

• “Improve the Robustness and Performance of Your ObjectPool,” Thomas E. Davis

http://www.javaworld.com/javaworld/jw-08-1998/jw-08-object-pool_p.html

• Java Tip 67: Lazy instantiation by Philip Bishop and Nigel Warrant

http://www.javaworld.com/javaworld/javatips/jw-javatip67_p.html

• Java Tip 78: Recycle broken objects in resource pools

http://www.javaworld.com/javaworld/javatips/jw-javatip78_p.html

• “The Java Tutorial,” Lesson - Threads: Doing Two or More Tasks at Once

http://java.sun.com/docs/books/tutorial/essential/threads/index.html

• ”Pooling Arbitrary Objects,” researched by Ramchandar Varadarajan

http://developer.java.sun.com/developer/qow/archive/138/index.jsp

• “Reduce, Reuse and Recycle: Reusing Objects - Part I,” Angus Muir and Roman
Bialach

http://www.microjava.com/articles/techtalk/recycle

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 39

4.3 Session Framework

4.3.1 Purpose

The purpose of the ITA session framework is to provide a standard to simplify, and
extend the implementation of user session/context information within the J2EE standard.
The session framework will provide a common way to access user session/context
information regardless of the storage method. The framework will decouple session
information from the request, session, and cookie contexts; the framework will also wrap
WebSphere session extension classes.

4.3.2 System Overview

The session framework provides a mechanism for the retrieval and manipulation of user
session and context data stored in cookies, web server session variables, or in a data store.
The framework also creates one common interface for application developers to access
the session via any of these methods.

The session framework will provide context management service that stores a user’s
temporary data during their HTTP session. The session framework will provide for the
following services on both the client-side and server-side contexts:

• A common interface to all HTTP variables (request, cookie, session)

• Storing temporary data that should persist across each web page presented to the

user

The FSAContextManager class is the main class that application developers will call to
obtain the session information. This class will require the calling application to provide
the HttpServletRequest object and the type of method (client or server) to use to store
session information.

The FSACookieRetrieval and FSASessionRetrieval are internal classes and are called by
the ContextManager to access and manipulate the client and server session data.

4.3.3 Design Considerations

4.3.3.1 Assumptions and Dependencies

The session framework will function in a J2EE application server environment. As the
current production servers for FSA are running IBM’s WAS v. 3.5.3 and v. 3.5.5, the
framework will be compiled using its required JDK version 1.2.2. It will also work with
the current JavaServer Pages (1.1), Java Servlet (2.2), and Java Database Connectivity (2.0)
specifications for this server. It will be built and tested on the Sun Solaris 2.6 and HP-UX

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 40

11.0 operating systems. While this framework will be built using these product versions,
it will be built in accordance with J2EE standards and to support product upgrades.

4.3.3.2 Goals and Guidelines

The goal of the session framework is to provide a simple yet robust framework that could
easily be utilized by any FSA development team using Java. The session framework
provides the developer with a single interface to the session context regardless of where
the session data is stored. This avoids duplicate development efforts by each application
developer for every interaction with the session context. This framework will provide
developers with the methods to use to access session data and prevent the developers
from using deprecated APIs.

Cookies and URL rewriting should be enabled in Session Manager regardless of the
context component used. It is important to note that even if the application developer
chooses to store session data on the server, cookies or URL rewriting will still have to be
used to store the session ID on the client. Additional guidelines for configuring the
WebSphere Session Manager for the server-side context component can be found in
section 4.3.9 of this document.

4.3.3.3 Development Methods

This framework will be developed using general object-oriented software development
techniques. The standard class and sequence diagrams are provided in this document.
These diagrams should assist developers who are unfamiliar with this framework.

4.3.4 System Architecture

4.3.4.1 Overview

The session framework provides the following session context storage methods:
• Client Side State Context Component: Small amounts of session data can be stored

in cookies on the users’ browsers
• Server Side Context Component:

o Stateful In-Memory Context Component: Users’ session data are stored in
the server’s memory in-between web requests using WebSphere session
variables

o Server Side Temporary Data Store Context Component: Users’ session data
is held in a temporary database or data store

4.3.4.2 Client-Side State Context Component

The client-side context component stores the users persistent state on the client by
embedding the persistent state in a ‘Cookie’. Cookies allow a web page to write a small

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 41

amount of information to a user’s browser in a safe and secure manner. This is a safe
operation for the client and server. The browser will send the cookie back to the Web
Server with each HTTP request.

Cookies are ‘stateless’; no resources are used on the server in-between page requests.
This makes the applications more scaleable and capable of handling a large number of
users. Because the client stores its session information, the request does not have to be
directed back to the same server in a clustered environment.

Cookies cannot be used if the users’ browser does not support them or if the user disables
the cookies function. Since the information stored in the cookie is passed in the URL, it is
possible for users to see what information is being stored in the cookie. Any sensitive
information must be encrypted before being sent to the browser. Given that cookies are
passed between the user’s browser and the web server each time a request is sent, using
cookies is not a practical option for storing large amount of data since doing so would
reduce network performance.

4.3.4.3 Server-Side Context Component

The WebSphere Session Manager Graphical User Interface (GUI) can be used to configure
how session data is stored on the server-side. By default, WebSphere is configured to
store session objects in memory. Administrators have the option of enabling persistent
session management, which instructs WebSphere to place session objects in a database.
The administrator can enable persistence by changing a setting in the WebSphere Session
Manager GUI and configuring the datasource to use.

The WebSphere servlet engine supports the Java Servlet specification containing the
interface javax.servlet.http.HttpSession. From an application development perspective,
servlet and JSP code do not interact directly with the Session Manager object. Rather, the
Session Manager supports the HttpSession interface, which developers use for session
management. Depending on how the administrator configured the WAS Session
Manager to handle the server-side context component, the WAS SessionManager will
access the session information in the server’s memory to the database transparently.

IBM provides an extension API to the HttpSession interface that the FSASessionRetreival
class in the session framework will utilize in order to set and retrieve session data. The
session framework will utilize the IBMSession interface in the
com.ibm.websphere.servlet.session package.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 42

4.3.4.3.1 Stateful In-Memory Context Component (Local Sessions)

Stateful in-memory context component refers to session objects being stored in
WebSphere session variables. The data stored here is not persistent and will not be
maintained should the server unexpectedly fail. Local session information is not shared
with other clustered machines and users can only obtain their session information if they
return to the web server instance holding their session information on subsequent access
to a web site.

4.3.4.3.2 Server Side Temporary Data Store Context Component (Persistence)

In order to store session data in a data store, the WebSphere Session Manager
configuration has to be modified. This ensures that if an application server fails, the
session data is not lost. Persistence storage also allows for different servers in the same
WebSphere domain to share access to a session if the same data source is specified for
each Session Manager. This way, the user’s session will be available regardless of which
application server is accessed. Storing session information in a data store could result in
slower performance and require greater consideration into the amount of connections
available and database backup and recovery.

4.3.4.4 Subsystem Architecture: FSAContextManager

The FSAContextManager class can be called by applications access data stored on the
client or stored on the server.

4.3.4.5 Subsystem Architecture: Interface FSADataRetrieval

This is the Interface implemented by FSACookieRetrieval and FSASessionRetrieval.

4.3.4.6 Subsystem Architecture: FSACookieRetrieval

The FSACookieRetrieval class extends FSADataRetrieval and is used by
FSASContextManager to access client cookies.

4.3.4.7 Subsystem Architecture: FSASessionRetrieval

FSAContextManager uses the FSASessionRetrieval class, which extends
FSADataRetrieval, to access session data stored on the server.

4.3.4.8 Subsystem Architecture: Interface IBMSession

The IBMSession interface is an IBM extension that extends and adds to the Java Servlet
API. This interface extends the HttpSession for session support and increases web
administrators’ control in a clustered environment. Application developers should not
call this class directly, but instead use the method provided in the FSASessionRetrieval
class.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 43

4.3.5 Detailed System Design

4.3.5.1 Component Definitions

4.3.5.1.1 FSAContextManager

Class Name: FSAContextManager
Component: Session
Description: Public class
Package: gov.ed.fsa.ita.session
Superclass: Object

Attribute Type Description

Private:
m_data FSADataRetrieval Stores the type of FSADataRetrieval object to

access.
m_valueHash Hashtable The hashtable of key/value pairs.

Con/Destructors Arguments
(Type, Name)

Description

FSAContextManager javax.servlet.HttpServletRequest
request,

Boolean manUpdate

Default Constructor for storing session data on the
server. The Boolean value is set to true when
manual update will be used.

FSAContextManager javax.servlet.HttpServletRequest
request,

javax.servlet.HttpServletResponse
response,

String domain

Constructor used for storing session data on the
client.

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
getValue String name String This method gets the value

from the hashtable for the key.
setValue String name,

String value
void This method sets the key and

value in the hashtable.
deleteValue String name String Clears the hashtable of all

values for the specified key.
writeValues none Boolean This method calls the

appropriate sub-class method to
put the information from the
hashtable into the chosen
storage type.

clearValues none void Clears the hashtable of all key
value pairs.

getKeys none java.util.Enumerati
on

Returns an Enumeration of all
keys in the hashtable.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 44

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

sync none void Calls the IBMSession's manual
update method - sync() to the
database. When the
FSASessionRetrieval
constructor is called and the
Boolean value passed in is true
then application developer will
have to ensure that sync is
called at the end.

4.3.5.1.2 FSADataRetrieval

Interface Name: Interface FSADataRetrieval
Component: Session
Description: Public interface that is implemented by FSACookieRetrieval and FSASessionRetrieval
Package: gov.ed.fsa.ita.session
Superinterface: None

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
GetValues none Hashtable Returns a list of all key/value

pairs for the request.
WriteValues Hashtable hashtable Boolean Writes the hashtable to the

proper client or server store.

4.3.5.1.3 FSACookieRetrieval (Protected)

Class Name: FSACookieRetrieval
Component: Session
Description: This class will implement FSADataRetrieval and get and set the cookies on the client

side.
Package: gov.ed.fsa.ita.session
Superclass: FSADataRetrieval

Attribute Type Description

Private:
m_request HttpServletRequest The request object to set or obtain session

information.
m_response HttpServletResponse Used to store the response object for the session.
m_path String Used to store a path name to the application to

differentiate between sessions.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 45

Con/Destructors Arguments
(Type, Name)

Description

FSACookieRetrieval HttpServletRequest request,
HttpServletResponse response,
String domain

This is the default constructor.

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
getValues none Hashtable Get all key/values in the cookie

and store in the hashtable.
writeValues Hashtable hash Boolean Write the key/value pairs from

the hashtable to new cookies.
This method can only be called
once during the life of the class
since there is no method to delete
cookies from responses. If the
write command is called
multiple times, a deleted value
may not be removed and existing
values will be added twice.
Boolean returns true after the
first time the method is called
and returns false if the write
method has been called more
than once already.

4.3.5.1.4 FSASessionRetrieval (Protected)

Class Name: FSASessionRetrieval
Component: Session
Description: This class will get and set the session variables.
Package: gov.ed.fsa.ita.session
Superclass: FSADataRetrieval

Attribute Type Description

Private:
m_request javax.servlet.HttpServletRequest The request object to set or obtain session

information.
m_session HttpSession The session obtained from the request.
m_update Boolean Default to false. Set to true if manual updating of

the Session table will be used.
m_valueHash java.util.Hashtable Hashtable to store key value pairs.

Con/Destructors Arguments
(Type, Name)

Description

FSASessionRetrieval javax.servlet.HttpServletRequest
request,

Boolean manualUpdate

This is the constructor to set if manually updating
the Session table. Pass true for manualUpdate.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 46

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
cookieTest javax.servlet.HttpSession

session
Boolean Tests whether the user's browser

accepts cookies to store the
session ID.

getValues none java.util.Hashtable Get all key/values in the cookie
and store in the hashtable.

writeValues java.util.Hashtable hash Boolean Write the key/value pairs from
the hashtable to the session. This
method can be called more than
once because the session values
will be removed first before the
hashtable values are written.
Boolean will always return true.

4.3.5.1.5 IBMSession

Interface Name IBMSession
Component: IBM Extension to the Servlet API 2.1
Description: The IBMSession interface extends the HttpSession interface of the Servlet API to:

• allow the session to be maintained in a clustered environment (via object
serialization)

• provide a measure of security for when a servlet attempts to access a session
• allow customer control of the WebSphere concept of a HttpSession transaction

in a clustered, database mode of operation.
Package: com.ibm.websphere.servlet.session
Superinterface: java.io.Externalizable

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
getUserName none String Gets the username associated

with the session.
isOverflow none Boolean Determines whether Allow

Overflow is enabled. Allow
Overflow specifies whether to
allow the number of sessions in
memory to exceed the value
specified by the Base In-memory
Size property in the WebSphere
Session Manager.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 47

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

sync none void Used when WebSphere is set to
manual mode to allow the
application to decide when a
session should be stored
persistently.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 48

4.3.6 Class Diagram

4.3.6.1 Session Framework Class Diagram

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 49

1. If using Sessions to store
data: FSAContextManager
(request, manuUpdate). If
using Cookies to store data:
FSA(ContextManager
(request, response, path).
The ContextManager will
use the session or cookie
retrieval methods to obtain
any values that may already
exist and populate it in a
hash table.

2. The application has the

ability to get, set, and delete
any values stored in the
ContextManager hash table.

5. The application can ask the

ContextManager to write any
data stored in the Hashtable
to the storage medium. If
using Sessions, writeValues
will take the place of
IBMSession’s sync method.

6. clearValues is used to

clear the Hashtable of any
values.

7. getKeys returns an

Enumeration of all key
stored in the Hashtable.

4.3.7 Sequence Diagram

4.3.7.1 Session Framework Sequence Diagram

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 50

4.3.8 Data Model

This table depicts the data model that will be used to store the persistence data stored in
WebSphere database Sessions table.

Name Null? Type Description
 ------------------------------ -------- ---------------------------- ----------------------------

 ID NOT NULL VARCHAR2(64) Unique identifier
 PROPID NOT NULL VARCHAR2(64)
 APPNAME VARCHAR2(64) Application name
 LISTENERCNT NUMBER(38)
 LASTACCESS NUMBER(38) Last time app. was accessed
 CREATIONTIME NUMBER(38) Time of session creation
 MAXINACTIVETIME NUMBER(38) Maximum idle time allowed
 USERNAME VARCHAR2(256) User name
 SMALL RAW(2000) Store data that is less than 3KB
 MEDIUM LONG RAW Store data that is 3KB to 2MB
 LARGE RAW(1) Store data that is greater than 2MB1

1 This is an estimated number.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 51

4.3.9 WebSphere Session Manager Configuration

The Session Manager property panes have to be configured for each application servlet
engine according to the following guidelines in order for the application to utilize the
FSAContextManager class. The guidelines described below are general configuration
guidelines; please refer to the Best Practices for using HTTP Session document in the
reference section for a complete description of each option.

Figure 4: Sample Session Manager properties configuration screen.

In the Enable tab of the Session Manager properties pane, ‘Enable Sessions’ and ‘Enable
Cookies’ should have the radio button for the option ‘Yes’ darkened. By enabling both
sessions and cookies, application developers will have the flexibility of storing session
information on either the client or the server. ‘Enable URL Rewriting’ should also be set
to ‘Yes’ so that users whose browsers do not accept cookies can still interact with
applications that support URL rewriting. Government regulations also prohibit the use
of cookies (in some cases) to store user information and URL rewriting would be needed
then to maintain the session state.

If both cookies and URL rewriting are enabled and the application developer does not
provide code to perform the URL rewriting then only cookies will be used. If URL
rewriting is used, the cookie information will still exist as well.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 52

If the application developer wants to store the session information on the server in a
database, then ‘Enable Persistent Sessions’ should be enabled. Persistent sessions should
be utilized for maintaining session affinity. WebSphere automatically performs the
required steps necessary to store the data in session variables or in the database without
developer intervention.

In the Cookies tab, the ‘Cookie Name’ option has to maintain the default value of
‘sessionid’ since it is a requirement of the J2EE specification. The Persistence tab has to be
configured with the data source information if Persistent Sessions has been enabled. The
‘Invalidate Time’ option in the Intervals tab will be different depending on the needs of
each application. The options to select in the Tuning tab will be different for each
application.

In general, ‘Using Cache’ and ‘Allow Overflow’ should be enabled and the ‘Base Memory
Size’ should be increased substantially from the default. It is considered to be a best
practice to keep stored session data to less than 4KB, but if it is not possible then the
‘Using Multirow Sessions’ option should be examined more closely. Detailed description
and facts to consider before selecting an option can be found in the Best Practices for
using HTTP Session document.

Tab Setting Values
Enable Enable Sessions Yes
Enable Enable Cookies Yes
Enable Enable URL Rewriting Yes
Enable Enable Persistent Sessions Yes (if storing data and

using clustering)
Cookies Cookie Name sesessionid
Persistence 4.3.9.1 All Settings Include data source

information if persistence is
used

Intervals Invalidate Time Depends on the application
requirements

Tuning 4.3.9.2 All Settings Depends on the application
requirements

Tuning Use Cache Generally Enabled
 Allow Overflow Generally Enabled
 Base Memory Size Generally be increased

substantially from the
default

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 53

4.3.10 References

• Best Practices for Session Programming: WebSphere Application Server

http://www-
4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/0404010108.html

• Maintaining Session Data with the WebSphere Session Manager

http://www6.software.ibm.com/devtools/news0801/art26.htm

• Session Manager Properties

http://www-
4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/06061100.ht
ml

• WebSphere Application Server Best Practices using HTTP Sessions

http://www.106.ibm.com/developerworks/patterns/guidelines/HTTP_Session_Best_Practi
ce.pdf

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 54

4.4 FTP Framework

4.4.1 Purpose

The purpose of the ITA FTP framework is to provide a standard interface to applications
for FTP commands return codes. The framework allows applications to create FTP
connections and execute a variety of FTP commands (which include the upload and
download of files). A graphical user interface allows applications to easily add FTP
functionality.

4.4.2 System Overview

The FTP framework is created using the Java programming language. The FTP
framework will run on IBM’s WebSphere Application Server (WAS). The FTP framework
provides a mechanism to create FTP connections and execute FTP commands. The
framework also allows the application to choose the level of security (SSL) to be used for
the information transfer. The framework creates one common application-programming
interface (API) for application developers. A graphical user interface is also available for
applications to use.

4.4.2.1 What is FTP?

File Transfer Protocol is a client-server protocol that allows a user on one computer to
transfer files to and from another computer over a TCP/IP network. FTP utilizes two
ports, a 'data' port and a ‘command’ port (also known as the control port). The command
port is used for the transfer of commands, which describe the functions to be performed,
and the replies to these commands. The data port is used to transfer data (directory
listings, files, etc) between the client and the server.

FTP has two connection modes called active mode and passive mode. Both modes use
the command port and data port. However, the determination of the ports (client or
server) is different. In active mode, the client initiates the command port to the server
and the server initiates the data port back to the client. In passive mode, the client
initiates both the command port and data port to the server.

4.4.2.1.1 Active Mode

The following are the steps performed during active mode:
• The client connects from a random unprivileged port (n > 1024) to the server’s

command port
• The client sends the server a port number (n + 1) to the server (via the PORT

command)
• The server connects to the client’s specified data port from its local data port

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 55

However, there is a problem with active mode when there is a client firewall. In active
mode, the FTP client does not make the actual connection to the data port of the server.
The client only tells the server what port it is listening on and the server connects back to
the specified port on the client. To the firewall, the server connection appears to be an
outside system initiating a connection to an internal client and the firewall will not
always allow the connection. In this case, passive mode should be used.

4.4.2.1.2 Passive Mode

The following are the steps performed during passive mode:
• The client opens two random unprivileged ports (n > 1024 and n+1)
• The client issues a PASV command on the first port
• The server opens a random unprivileged port and sends the port number to the

client (via the PORT command)
• The client connects to the server’s specified data port from second opened port

Passive mode solves the problem of having a firewall on the client side. However, it does
pose other issues. The biggest issue is the need to allow any remote connection to high
numbered ports on the server. However, most FTP daemons allow the specification of a
range of ports for the use of FTP.

4.4.2.2 Java Secure Socket Extension

The Java Secure Socket Extension (JSSE) 1.0.2 is a set of Java packages that enable secure
Internet communications. The JSSE implements a Java version of Secure Sockets Layer
(SSL) and Transport Layer Security (TLS) protocols and includes functionality for data
encryption, server authentication, and message integrity. Using JSSE, developers can
provide for the secure passage of data between a client and a server running FTP over
TCP/IP.

The FTP framework utilizes the javax.net.ssl package. This package contains classes that
allow applications to create secure sockets for use during the FTP connection process.

4.4.3 Design Considerations

4.4.3.1 Assumptions and Dependencies

The FTP framework will function in a J2EE application server environment. As the
current production server for FSA is IBM’s WAS v. 3.5, the framework will be compiled
using its required JDK version 1.2.2. It will also work with the current JavaServer Pages
(1.1) and Java Servlet (2.2) specifications for this server. It will be fully tested on both the
Sun Solaris 2.6 and the HP-UX 11.0 operating systems. While this framework will be

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 56

built using these product versions, it will be built in accordance with J2EE standards and
to support product upgrades.

4.4.3.2 Goals and Guidelines

The goal of the FTP framework is to provide a simple and robust framework that may be
applied by FSA application teams developing in the Java environment, as well as
WebSphere. The FTP framework abstracts the syntax of FTP commands into the
architecture layer. This allows applications to execute FTP commands without having to
consider command syntax or command return codes. The graphical user interface allows
applications to quickly insert FTP functionality into their own front end.

4.4.3.3 Development Methods

This framework will be developed using general object-oriented software development
techniques. The standard class and sequence diagrams are provided in this document.
These diagrams are intended to assist developers who are unfamiliar with this
framework.

4.4.4 System Architecture

4.4.4.1 Overview

The FTP framework allows an application to make FTP connections and execute FTP
commands without having to manage command syntax and command return codes.
There are Java classes that create the FTP framework, and there are the JSP files and Java
classes that create the graphical user interface to the FTP APIs. All of these parts are
discussed in-depth in the detailed design section.

4.4.4.2 Subsystem Architecture for FTP Framework

4.4.4.2.1 Subsystem Architecture: FSAFtpClient

The FSAFtpClient class is the wrapper class for all FTP commands.

4.4.4.2.2 Subsystem Architecture: FSAReplyCodes

Reply codes for debugging purposes. The codes' English interpretations are stored in a
hashtable for lookup. They are taken directly from RFC959 – the link for which can be
found in the reference section.

4.4.4.2.3 Subsystem Architecture: FSAFtpControlSocket

The FSAFtpControlSocket class supports client-side FTP command operations.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 57

4.4.4.2.4 Subsystem Architecture: FSAFtpDataSocket

The FSAFtpDataSocket class Supports client-side FTP DataSocket in Passive and Active
Mode. It is a wrapper for Socket and ServerSocket.

4.4.4.2.5 Subsystem Architecture: FSAFtpException

The FSAFtpException class is for FTP specific exceptions.

4.4.4.3 Subsystem Architecture for Graphical User Interface

4.4.4.3.1 Overview

The graphical user interface for the FTP framework uses the web conversation
framework. For more information on the web conversation framework, see the
appropriate section in this document.

4.4.4.3.2 Subsystem Architecture: FTPConnectAction

The FTPConnectAction class assists in the display of an FTP connection.

4.4.4.3.3 Subsystem Architecture: FTPConnectForm

The FTPConnectForm class holds the data to be displayed.

4.4.4.3.4 Subsystem Architecture: FTPMoveFileAction

The FTPMoveFileAction class assists in the display.

4.4.4.3.5 Subsystem Architecture: FTPMoveFileForm

The FTPMoveFileForm class holds the data to be displayed.

4.4.5 Detailed System Design

4.4.5.1 Component Definitions

4.4.5.1.1 FSAFtpClient

Class Name: FSAFtpClient
Component: FTP
Description: This class is the wrapper class for all FTP commands.
Package: gov.ed.fsa.ita.ftp
Superclass: Object

Attribute Type Description

Public:
m_host static String The host string to make the FTP connection
m_username static String The username to make the connection
m_password static String The password to make the connection
m_port static String The default port number

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 58

Con/Destructors Arguments

(Type, Name)
Description

FSAFtpClient None Default Constructor
FSAFtpClient String host, boolean isSecure Constructor that also creates a control port to the

specified host.
FSAFtpClient String host, String port, boolean

isSecure
Constructor that also creates a control port to the

specified host and port.

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
connect String host boolean

This method creates an FTP
connection to the host passed in.
Uses the default port number.

connect String host, String port boolean This method creates an FTP
connection to the host and port
passed in.

login String username, String
password

void This method logs into an account
on the FTP server.

setUser String username void This method identifies the user
to the FTP server.

setPassword String password void This method identifies the
password to the FTP server.

changeDirectory String pathname void This method changes the remote
working directory.

quit None void This method quits the FTP
session.

setTransferMode String transferMode void This method sets the data
transfer mode. (ASCII or binary)

putFile String filename void This method puts the file from
the client to the server

getFile String filename void This method gets the file from
the server to the client.

4.4.5.1.2 FSAReplyCodes

Class Name: FSAReplyCodes
Component: FTP
Description: This class contains all the possible reply codes according to RFC959. It also contains a

static initializer to populate the hashtable with all the reply codes and their descriptions.
Package: gov.ed.fsaita.ftp
Superclass: Hashtable

Attribute Type Description

Private:
replyCodes static Hashtable The hashtable that stores the reply codes.
Public:

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 59

Attribute Type Description

POSITIVE_PRELIMINARY static final int First-digit encoding of reply values. The value is
set to 1.

 POSITIVE_COMPLETION static final int First-digit encoding of reply values. The value is
set to 2.

POSITIVE_INTERMEDIATE static final int First-digit encoding of reply values. The value is
set to 3.

TRANSIENT_NEGATIVE_C
OMPLETION

static final int First-digit encoding of reply values. The value is
set to 4.

PERMANENT_NEGATIVE_
COMPLETION

static final int First-digit encoding of reply values. The value is
set to 5.

SYNTAX static final int Second-digit encoding of reply values. The value
is set to 0.

 INFORMATION static final int Second-digit encoding of reply values. The value
is set to 1.

CONNECTIONS static final int Second-digit encoding of reply values. The value
is set to 2.

AUTHENTICATION_AND_
ACCOUNTING

static final int Second-digit encoding of reply values. The value
is set to 3.

UNSPECIFIED static final int Second-digit encoding of reply values. The value
is set to 4.

FILE_SYSTEM static final int Second-digit encoding of reply values. The value
is set to 5.

RESTART_MARKER_REPLY

static final int 100 block of reply codes. The value is set to 110.

SERVICE_READY_IN_NNN_
MINUTES

static final int 100 block of reply codes. The value is set to 120.

DATA_CONNECTION_ALR
EADY_OPEN_TRANFER_ST
ARTING

static final int 100 block of reply codes. The value is set to 125.

FILE_STATUS_OK_ABOUT_
TO_OPEN_DATA_CONNEC
TION

static final int 100 block of reply codes. The value is set to 150.

COMMAND_OK = 200; static final int 200 block of reply codes. The value is set to 200.
COMMAND_NOT_IMPLEM
ENTED_SUPERFLUOUS

static final int 200 block of reply codes. The value is set to 202.

STATUS_OR_HELP_REPLY static final int 200 block of reply codes. The value is set to 211.
 DIRECTORY_STATUS static final int 200 block of reply codes. The value is set to 212.
FILE_STATUS static final int 200 block of reply codes. The value is set to 213.
HELP_MESSAGE static final int 200 block of reply codes. The value is set to 214.
 SYSTEM_TYPE static final int 200 block of reply codes. The value is set to 215.
SERVICE_READY_FOR_NE
W_USER

static final int 200 block of reply codes. The value is set to 220.

SERVICE_CLOSING_CONTR
OL_CONNECTION

static final int 200 block of reply codes. The value is set to 221.

DATA_CONNECTION_OPE
N_NO_TRANSFER_IN_PRO
GRESS

static final int 200 block of reply codes. The value is set to 225.

CLOSING_DATA_CONNEC
TION_AFTER_SUCCESSFUL
_ACTION

static final int 200 block of reply codes. The value is set to 226.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 60

Attribute Type Description

ENTERING_PASSIVE_MOD
E

static final int 200 block of reply codes. The value is set to 227.

USER_LOGGED_IN static final int 200 block of reply codes. The value is set to 230.
FILE_ACTION_OK_AND_C
OMPLETED

static final int 200 block of reply codes. The value is set to 250.

DIRECTORY_CREATED static final int 200 block of reply codes. The value is set to 257.
USER_NAME_OK static final int 300 block of reply codes. The value is set to 331.
NEED_ACCOUNT_FOR_LO
GIN

static final int 300 block of reply codes. The value is set to 332.

`REQUESTED_ACTION_PE
NDING_MORE_INFO

static final int 300 block of reply codes. The value is set to 350.

SERVICE_NOT_AVAILABLE
_CLOSING_CONTROL_CON
NECTION

static final int 400 block of reply codes. The value is set to 421.

CANNOT_OPEN_DATA_CO
NNECTION

static final int 400 block of reply codes. The value is set to 425.

CONNECTION_CLOSED_TR
ANSFER_ABORTED

static final int 400 block of reply codes. The value is set to 426.

ACTION_NOT_TAKEN_FIL
E_UNAVAILABLE_FILE_BU
SY

static final int 400 block of reply codes. The value is set to 450.

ACTION_ABORTED_LOCAL
_ERROR

static final int 400 block of reply codes. The value is set to 451.

ACTION_NOT_TAKEN_INS
UFFICIENT_STORAGE_SPA
CE

static final int 400 block of reply codes. The value is set to 452.

SYNTAX_ERROR_IN_COM
MAND

static final int 500 block of reply codes. The value is set to 500.

SYNTAX_ERROR_IN_PARA
METERS

static final int 500 block of reply codes. The value is set to 501.

COMMAND_NOT_IMPLEM
ENTED

static final int 500 block of reply codes. The value is set to 502.

BAD_SEQUENCE_OF_COM
MANDS

static final int 500 block of reply codes. The value is set to 503.

COMMAND_NOT_IMPLEM
ENTED_FOR_THAT_PARA
METER

static final int 500 block of reply codes. The value is set to 504.

NOT_LOGGED_IN static final int 500 block of reply codes. The value is set to 530.
NEED_ACCOUNT static final int 500 block of reply codes. The value is set to 532.
ACTION_NOT_TAKEN_FIL
E_UNAVAILABLE

static final int 500 block of reply codes. The value is set to 550.

ACTION_ABORTED_PAGE_
TYPE_UNKNOWN

static final int 500 block of reply codes. The value is set to 551.

ACTION_ABORTED_EXCEE
DED_STORAGE_ALLOCATI
ON

static final int 500 block of reply codes. The value is set to 552.

ACTION_NOT_TAKEN_FIL
E_NAME_NOT_ALLOWED

static final int 500 block of reply codes. The value is set to 553.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 61

Con/Destructors Arguments
(Type, Name)

Description

FSAReplyCodes None Default Constructor

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
changeCode int code String

Converts the numeric FTP code
specified in the parameter code
to an English description, taken
from RFC959.

4.4.5.1.3 FSAFtpControlSocket

Class Name: FSAFtpControlSocket
Component: FTP
Description: This class performs all the operations having to do with the control socket of an FTP

connection.
Package: gov.ed. fsa.ita.ftp
Superclass: Object

Attribute Type Description

Con/Destructors Arguments

(Type, Name)
Description

FSAFtpControlSocket None Default Constructor
FSAFtpControlSocket String host, boolean isSecure Constructor that also creates a control port to the

specified host.
FSAFtpControlSocket String host, String port, boolean

isSecure
Constructor that also creates a control port to the
specified host and port.

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Private:
initStreams None void Obtain the reader/writer streams

for this connection.
readReply None String Read the FTP server's reply to a

previously issued command.
validateReply String replyCode, String

acceptedReplyCode
void Validate the response the host

has supplied against the
expected reply. If an unexpected
reply is received, an exception is
thrown, setting the message to
that returned by the FTP server.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 62

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

validateReply String replyCode, String []
acceptedReplyCodes

void Validate the response the host
has supplied against the
expected reply. If an unexpected
reply is received, an exception is
thrown, setting the message to
that returned by the FTP server.

Public:
getRemoteHostName None String Get the name of the remote host.
setTimeout int millis void Set the TCP timeout on the

underlying control socket.
logout None void Quit this FTP session and clean

up.
createDataSocket String connectMode FSAFtpDataSocket Request a data socket be created

on the server, connect to it and
return our connected socket.

sendCommand String command String Send a command to the FTP
server and return the server's
reply.

4.4.5.1.4 FSAFtpDataSocket

Class Name: FSAFtpDataSocket
Component: FTP
Description: This class performs all the operations having to do with the data socket of an FTP

connection.
Package: gov.ed. fsa.ita.ftp
Superclass: Object

Attribute Type Description

passiveSocket ServerSocket The underlying socket for PASV connection or
Socket accepted from server.

activeSocket Socket The underlying socket for Active connection.

Con/Destructors Arguments

(Type, Name)
Description

FSAFtpDataSocket None Default Constructor
FSAFtpDataSocket Socket socket, boolean isSecure Constructor that creates a data socket connected to

an active socket.
FSAFtpDataSocket ServerSocket socket, boolean

isSecure
Constructor that creates a data socket connected to
an active socket.

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 63

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
close None void This method closes the socket.
setTimeout int millis void Set the TCP timeout on the

underlying control socket.
getOutputStream None OutputStream Gets the output stream of the

connection.
getInputStream None InputStream Gets the input stream of the

connection.
4.4.5.1.5 FSAFtpException

Class Name: FSAFtpException
Component: FTP
Description: This class handles exceptions within the FTP package.
Package: gov.ed. fsa.ita.ftp
Superclass: FSAException

Attribute Type Description

Con/Destructors Arguments

(Type, Name)
Description

FSAFtpException String msg Default Constructor
FSAFtpException String msg String replyCode Constructor that allows for a reply code.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 64

Graphical User Interface Screenshots

4.4.5.1.6 To make a FTP connection – FTPConnection.jsp

4.4.5.1.7 To move files between the client and the server – FTPMoveFile.jsp

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 65

4.4.6 Class Diagram

4.4.6.1 FTP Classes

FSAFtpReplyCodes

POSITIVE_PRELIMINARY : int = 1
POSITIVE_COMPLETION : int = 2
POSITIVE_INTERMEDIATE : int = 3
TRANSIENT_NEGATIVE_COMPLETION : int = 4
PERMANENT_NEGATIVE_COMPLETION : int = 5
SYNTAX : int = 0
INFORMATION : int = 1
CONNECTIONS : int = 2
AUTHENTICATION_AND_ACCOUNTING : int = 3
UNSPECIFIED : int = 4
FILE_SYSTEM : int = 5
RESTART_MARKER_REPLY : int = 110
SERVICE_READY_IN_NNN_MINUTES : int = 120
DATA_CONNECTION_ALREADY_OPEN_TRANFER_STARTING : int = 125
FILE_STATUS_OK_ABOUT_TO_OPEN_DATA_CONNECTION : int = 150
COMMAND_OK : int = 200
COMMAND_NOT_IMPLEMENTED_SUPERFLUOUS : int = 202
STATUS_OR_HELP_REPLY : int = 211
DIRECTORY_STATUS : int = 212
FILE_STATUS : int = 213
HELP_MESSAGE : int = 214
SYSTEM_TYPE : int = 215
SERVICE_READY_FOR_NEW_USER : int = 220
SERVICE_CLOSING_CONTROL_CONNECTION : int = 221
DATA_CONNECTION_OPEN_NO_TRANSFER_IN_PROGRESS : int = 225
CLOSING_DATA_CONNECTION_AFTER_SUCCESSFUL_ACTION : int = 226
ENTERING_PASSIVE_MODE : int = 227
USER_LOGGED_IN : int = 230
FILE_ACTION_OK_AND_COMPLETED : int = 250
DIRECTORY_CREATED : int = 257
USER_NAME_OK : int = 331
NEED_ACCOUNT_FOR_LOGIN : int = 332
REQUESTED_ACTION_PENDING_MORE_INFO : int = 350
SERVICE_NOT_AVAILABLE_CLOSING_CONTROL_CONNECTION : int = 421
CANNOT_OPEN_DATA_CONNECTION : int = 425
CONNECTION_CLOSED_TRANSFER_ABORTED : int = 426
ACTION_NOT_TAKEN_FILE_UNAVAILABLE_FILE_BUSY : int = 450
ACTION_ABORTED_LOCAL_ERROR : int = 451
ACTION_NOT_TAKEN_INSUFFICIENT_STORAGE_SPACE : int = 452
SYNTAX_ERROR_IN_COMMAND : int = 500
SYNTAX_ERROR_IN_PARAMETERS : int = 501
COMMAND_NOT_IMPLEMENTED : int = 502
BAD_SEQUENCE_OF_COMMANDS : int = 503
COMMAND_NOT_IMPLEMENTED_FOR_THAT_PARAMETER : int = 504
NOT_LOGGED_IN : int = 530
NEED_ACCOUNT : int = 532
ACTION_NOT_TAKEN_FILE_UNAVAILABLE : int = 550
ACTION_ABORTED_PAGE_TYPE_UNKNOWN : int = 551
ACTION_ABORTED_EXCEEDED_STORAGE_ALLOCATION : int = 552
ACTION_NOT_TAKEN_FILE_NAME_NOT_ALLOWED : int = 553

convertCode()

FSAFtpControlSocket

FTPControlSocket()
FTPControlSocket()
FTPControlSocket()
FTPControlSocket()
initStreams()
getRemoteHostName()
setTimeout()
logout()
createDataSocket()
sendCommand()
readReply()
v alidateReply()
v alidateReply()

FSAFt pC lient

m_host : String
m_username : String
m_password : String
m_port : String
m_transf erMode : String

FTPClient()
FTPClient()
FTPClient()
FTPClient()
setTimeout()
setConnectMode()
login()
setUser()
setPassword()
putFile()
putFile()
getFile()
listFiles()
listFiles()
setTransferMode()
delete()
rename()
rmdir()
mkdir()
chdir()
pwd()
system()
quit()

-cont rol

FSAFtpDataSocket

activeSocket : Socket
passiv eSocket : Serv erSocket

FTPDataSocket()
FTPDataSocket()
setTimeout()
getOutputStream()
getInputStream()
close()

-data

FSAFtpException

FTPException()
FTPException()
getReplyCode()

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 66

4.4.7 Sequence Diagrams

4.4.7.1.1 Make a FTP Connection

FTP
Connection.jsp

FTPConnectAc
ti on

FTPConnectFor
m

 : FSAFtpClient : FSAFtpControlSocket

1: perform 2: getData

4: connect(host, port, isSecure) 5: FSAFtpControlSocket(host, port, isSecure)

3: setTransferMode(trans ferMode)

1. Call the perform
method on the action
class.
2. Get the data out of
the form bean.
3. Set the transf er mode
for the connection. This
is active or passive.
4. The action class
creates a FTP
connection.
5. Create a control
socket connection.

4.4.7.1.2 Get/Put a file

FTPMoveFile.js
p

FTPMoveFileAc
tion

FTPMoveFileFo
rm

 : FSAFtpClient :
FSAFtpControlSocket

 :
FSAFtpDataSocket

1: perform 2: getData

3: putFile(clientFile, serverFile)

1. Call the perform
method on the action
class.
2. Get the data out of the
form bean.
3. The FtpClient puts the
file onto the server.
4. Create a data socket.
5. Create a data socket.
6. Get the output stream
from the data socket.
7. Verify the reply codes.

4: createDataSocket(transferMode)

5: FSAFtpDataSocket()

6: getOutputStream()

7: verifyReply()

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 67

4.4.8 References

• Sun Java Secure Socket Extension (JSSE) v. 1.0.2

http://java.sun.com/products/jsse/index-102.html

• Overview, History, and Current Specification for FTP

http://www.w3.org/Protocols/rfc959/

• Sun Java website

http://java.sun.com

• Struts Framework website

http://jakarta.apache.org/struts/

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 68

4.5 Configuration Framework

4.5.1 Purpose

The purpose of the configuration framework is to provide a standard for application
configuration input and modification. The framework will allow configuration
information to be loaded from properties files, XML files, or database tables.

The ITA configuration framework is implemented using the Accenture’s General and
Reusable Netcentric Delivery Solution (GRNDS) configuration framework. The GRNDS
code has been extended to meet FSA application development requirements. Specifically,
the framework has been extended to:

• Use a static initializer to load the configuration files, instead of using the GRNDS
bootstrap framework.

• Support configuration input from database tables.

4.5.2 System Overview

The configuration framework is created using the Java programming language. The
configuration framework will run on IBM’s WebSphere Application Server (WAS). The
configuration framework provides a mechanism for the retrieval of configuration
properties. The configuration framework allows configuration data to be stored in the
form of properties files, XML files, database tables, or any combination of the three. The
framework creates one common interface for application developers to access and
manipulate this data.

The FSAConfiguration class contains a static initializer. The first time this class is loaded
the static initializer is executed. The static initializer’s responsibility is to load
configuration data into memory. This is done using the Java ResourceBundle
functionality.

The Java ResourceBundle functionality locates properties files within the Classpath. The
ResourceBundle class is extended to create an FSAXmlResourceBundle class that locates
XML files within the Classpath. These properties (or XML files) contain base
configuration data.

The configuration framework organizes the configuration data into different domains.
Domains determine the scope for a property. Domains enable the concept of information
inheritance, in which common information is kept in one domain, and overridden for

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 69

specialized domains. These specialized domains are often referred to as sub domains,
while the parent domain is referred to as the master domain.

The following diagram depicts the relationship between the master domain (which must
be named “ConfigDomain” for properties files and XML files) and the sub domains.

Once the master domains are known, the application developer simply needs to request
the configuration property value from the configuration source class using the domain
(or sub-domain) and the configuration property key. If a value is not found for a specific
key in the requested domain, the configuration framework looks in its parent domain.
This continues until the key is found or the master domain is reached. If the key is not
found a null value is returned.

4.5.3 Design Considerations

4.5.3.1 Assumptions and Dependencies

It is assumed that the configuration framework will function in a J2EE application server
environment. As the current production server for FSA is IBM’s WAS v. 3.5, the
framework will be compiled using its required JDK version 1.2.2. It will also work with
the current JavaServer Pages (1.1), Java Servlet (2.2), and Java Database Connectivity (2.0)
specifications for this server. It will be built and tested on the Sun Solaris 2.6 and HP-UX
11.0 operating systems. While this framework will be built using these product versions,
it will be built in accordance with J2EE standards and to support product upgrades.

Although an upgrade to and use of JDK v. 1.4 configuration classes was examined, it was
concluded that it does not support multiple source configuration files. The framework
provides a configuration interface and currently can handle properties files, XML files,
and database tables.

ConfigDomain

ConfigDomain_subdomain1 ConfigDomain_subdomain2

ConfigDomain_subdomain1_subsubdomain1

ConfigDomain_subdomain1_subsubdomain2

ConfigDomain_subdomain2_subsubdomain1

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 70

Another consideration is the application server, WAS v. 3.5, that is currently in
production. WAS v. 3.5 is using the 1.2.2 version of the JDK. Given that the
configuration classes examined were from JDK v. 1.4, and that the WebSphere
Application Server’s is using JDK v. 1.2.2, it is to possible to utilize these classes until
WAS is upgraded to the most release of JDK.

4.5.3.2 Goals and Guidelines

The goal of the configuration framework is to provide a simple and robust framework
that may be applied by any FSA application team utilizing the Java development
environment. The configuration framework abstracts the reading of configuration data
into the architecture layer. This avoids duplicate logic written by different application
developers. The configuration framework also abstracts the representation of the
configuration data, which allows the format of the data to change without having to
perform any code changes.

4.5.3.3 Development Methods

This framework will be developed using general object-oriented software development
techniques. The standard class and sequence diagrams are provided in this document.
These diagrams should assist developers who are unfamiliar with this framework.

4.5.4 System Architecture

4.5.4.1 Overview

The Configuration Framework provides the following services:
• Configuration Data Load: the configuration data files are loaded into static

variables
• Configuration Data Retrieval: returns the value based on the domain name and

the tag/key name

4.5.4.2 SubsystemArchitecture: FSAConfiguration

The FSAConfiguration class is the class that contains the static initializer. It will find and
load the master domain data.

4.5.4.3 Subsystem Architecture: FSAXmlResourceBundle

The FSAXmlResourceBundle class extends the java.util.ResourceBundle class. This class
locates XML files within the Classpath.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 71

4.5.4.4 Subsystem Architecture: GrndsConfiguration

It is the concrete facility class that is used to retrieve configuration data from a variety of
sources. This class's primary responsibility is to supply configuration data from a variety
of sources in a uniform fashion.

4.5.4.5 Subsystem Architecture: GrndsConfigurationEnvironment

The GrndsConfigurationEnvironment class extends the java.util.Properties class. This
class encapsulates two ideas in application configuration: properties and configuration
classes. This class bridges both approaches to representing configuration information by
extending the java.util.Properties class and offering the ability to get the configuration
objects created from all sources.

4.5.4.6 Subsystem Architecture: GrndsConfigurationSource

The GrndsConfigurationSource interface defines the base interface that all concrete
sources must implement. The GrndsSystemPropertySource class,
GrndsPropertyFileSource class, GrndsXmlFileSource class, and GrndsDatabaseSource
class extend this class.

4.5.4.7 Subsystem Architecture: GrndsSystemPropertySource

This class integrates System properties into the GRNDS configuration facility. The source
returns the system properties for all domains and subdomains.

4.5.4.8 Subsystem Architecture: GrndsPropertyFileSource

GrndsPropertyFileSource defines a concrete configuration source based on Java property
files.

4.5.4.9 Subsystem Architecture: GrndsXmlFileSource

GrndsXmlFileSource defines a concrete configuration source based on XML files.

4.5.4.10 Subsystem Architecture: GrndsDatabaseSource

GrndsDatabaseSource defines a concrete configuration source based on database tables.
GrndsDatabaseSource utilizes the ITA Persistence Framework for database access.

4.5.4.11 Subsystem Architecture: GrndsConfigurationException

The GrndsConfigurationException may be thrown while processing the configuration
environment. This exception will be wrapped by the RCS exception handling
framework.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 72

4.5.5 Detailed System Design

4.5.5.1 Component Definitions

4.5.5.1.1 FSAConfiguration

Class Name: FSAConfiguration
Component: Configuration
Description: This class uses a static initializer to load the master domains for the XML files, properties

files, and database tables.
Package: gov.ed. fsa.ita.config
Superclass: Object

Attribute Type Description

Public:
m_xmlMasterDomain static String The master domain for the XML configuration

source.
m_propertiesMasterDomain static String The master domain for the properties file

configuration source.
m_databaseMasterDomain static String The master domain for the database table

configuration source.

Con/Destructors Arguments
(Type, Name)

Description

FSAConfiguration None Default Constructor.

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Private:
locateXmlMasterDomain None String

This method will locate the XML
master domain using the
FSAXmlResourceBundle class.

locatePropertiesMasterDomai
n

None
String

This method will locate the
properties file master domain
using the
PropertiesResourceBundle class.

locateDatabaseMasterDomain None String This method will locate the
database master domain.

4.5.5.1.2 FSAXmlResourceBundle

Class Name: FSAXmlResourceBundle
Component: Configuration
Description: This class locates XML files within the Classpath.
Package: gov.ed. fsa.ita.config
Superclass: java.util.ResourceBundle

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 73

Con/Destructors Arguments
(Type, Name)

Description

FSAXmlResourceBundle none Default Constructor

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
getKeys none java.util.Enumerati

on
Implementation of
ResourceBundle.getKeys().

handleGetObject String key Object Get an object from a
ResourceBundle.

4.5.5.1.3 GrndsConfiguration Interface

Interface Name: GrndsConfiguration
Component: Configuration
Description: This interface defines what methods are required for a functional configuration source.
Package: org.grnds.facility.config
Superclass: org.grnds.foundation.GrndsObject

Attribute Type Description

Public:
ms_instance static GrndsConfiguration The instance of this configuration.
GRNDS_CONFIG_DOMAIN static final String Default configuration domain.
m_isInitialized boolean True if the configuration is initialized. False if the

configuration is not initialized.
m_sources java.util.Vector The sources loaded in this configuration.
m_envCache org.grnds.foundation.cache..Grnd

sCache
The cache storing the configurations. (The ITA
configuration framework will not be using this
functionality).

Con/Destructors Arguments

(Type, Name)
Description

GrndsConfiguration none Default Constructor.
GrndsConfiguration GrndsConfigurationSource[] srcs_ Constructor that creates a logging facility with the

set configuration sources.
GrndsConfiguration GrndsConfiguration rhs_ Copy Constructor.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 74

Methods Arguments

(Type, Name)

Valid Responses
(Return Type, Exceptions

Thrown)

Description

Private:
doInitSources final String[] args_ void

This method loads and
initializes log categories
into the logging facility.

doFiniSources none void

This method finalizes and
removes log categories
from the logging facility.

makeExpirationPlan none GrndsCacheExpirationPlan
Protected:
createKey String domain_, String[]

subdomains_
static final String Returns the unique key

derived from the given
configuration domain and
subdomains.

findCachedEnvironment String domain_, String[]
subdomains_

final synchronized
GrndsConfigurationEnvironm
ent

Returns the cached
environment for the given
configuration domain and
subdomains. (The ITA
configuration framework
will not be using this
functionality).

doToString none String Stream the tags registered
with the trace facility.

Public:
getInstance none static final synchronized

GrndsConfiguration
Returns the singleton
instance for the
configuration facility.

parseSubdomainArray String subdomainList_ String [] This method parses the
subdomain list and
returns a String array
containing all the
subdomains.

setInstance GrndsConfiguration
newInstance_

void Sets the singleton instance
for the
GrndsConfiguration
facility.

clone None Object Clones the current
GrndsConfiguration

contains String domain_, String
key_

final boolean Returns true if there exists
at least one configuration
source that contains the
property identified by
key_.

contains String domain_, String[]
subdomains_, String
key_

boolean Returns true if there exists
at least one configuration
source that contains the
property identified by
key_.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 75

Methods Arguments
(Type, Name)

Valid Responses
(Return Type, Exceptions

Thrown)

Description

getEnvironment String domain_ GrndsConfigurationEnvironm
ent

Returns a Properties set
reflecting the entire
configuration
environment.

getProperty String domain_, String[]
subdomains_, String
key_

String Returns the property
within the
domain_/subdomains_
corresponding to the
given key_.

init String[] args synchonized void Initializes the Logging
Facility prior to use. First,
the Configuration facility
is used to load the log
category / channel
baseline. Each loaded
category and channel are
then initialized.

fini None synchonized void Perform finalization
operations for the Logging
facility. This operation
results in the finalization
of all the logging
categories and the closing
of their corresponding
PrintStreams.

refresh None synchonized void Refreshes the entire
configuration
environment.

addSource org.grnds.facility.config.G
rndsConfigurationSourc
e src_

void Adds a new log category
/ pair to the logging
facility. If the category
was already registered
with the logging facility,
then the previous
association pair is
replaced with the given
pair.

getSources None Enumeration Returns an enumeration
that provides access to all
of the configuration
sources.

4.5.5.1.4 GrndsConfigurationEnvironment Class

Class Name: GrndsConfigurationEnvironment
Component: Configuration
Description: This class encapsulates two ideas in application configuration: properties and

configuration classes.
Package: org.grnds.facility.config

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 76

Superclass: java.util.Properties

Attribute Type Description

Public:
m_objects java.util.Hashtable The hashtable of key and value pairs.

Con/Destructors Arguments
(Type, Name)

Description

GrndsConfigurationEnviron
ment

none Default Constructor.

GrndsConfigurationEnviron
ment

GrndsConfigurationEnvironment
rhs_

Copy Constructor.

Methods Arguments

(Type, Name)

Valid
Responses

(Return Type,
Exceptions
Thrown)

Description

Public:
clone none Object Clones the current

GrndsConfigurationEnvironment.
hashCode none int Returns the hashcode of the

m_object attribute.
equals Object rhs_ boolean Returns true if the 2

GrndsConfigurationEnvironments
are logically equal.

putAll Properties from_ void Put the keys in the hashtable
getConfigurationObject Class type_ Object Returns the configuration object

based on Class type_.
getConfigurationObject String type_ Object Returns the configuration object

based on String type_.
getConfigurationObjects none Enumeration Return all configuration objects
addConfigurationObject Object config_ void Adds a configuration object to the

hashtable
toString none String This method is called from the

template toString method.
Subclasses implement doToString()
to help produce an appropriate
string representation of the object.

getSources none Enumeration Returns an enumeration that
provides access to all of the
configuration sources.

4.5.5.1.5 GrndsConfigurationSource Interface

Interface Name: GrndsConfigurationSource
Component: Configuration
Description: This interface defines the base interface that all concrete sources must implement.
Package: org.grnds.facility.config
Superclass: java.lang.object

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 77

Attribute Type Description

Con/Destructors Arguments

(Type, Name)
Description

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
clone None abstract Object Clones the current

GrndsConfigurationSource.
getEnvironment String domain_,

String[] subdomains_
abstract
GrndsConfigurati
onEnvironment

Returns a Properties set
reflecting the configuration
environment defined by this
source.

init String[] args_ abstract void Concrete facility classes define
this method to perform
initialization operations. The
input arguments is the args_
array provided to main().

fini None abstract void Concrete application classes
define this method to perform
finalization operations.

refresh None abstract void Refreshes the configuration
source. This method enables the
ability to dynamically update
configuration information
without restarting the JVM.

4.5.5.1.6 GrndsSystemPropertySource Class

Class Name: GrndsSystemPropertySource
Component: Configuration
Description: This class integrates System Properties into the grnds configuration facility. It

implements the GrndsConfigurationSource interface.
Package: org.grnds.facility.config
Superclass: org.grnds.foundation.GrndsObject

Attribute Type Description

Con/Destructors Arguments

(Type, Name)
Description

GrndsSystemPropertySource none Default Constructor

GrndsSystemPropertySource GrndsSystemPropertySource rhs_ Copy Constructor

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 78

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
clone none abstract Object Clones the current

GrndsSystemPropertySource
getEnvironment String domain_,

String[] subdomains_
GrndsConfigurati
onEnvironment

Returns a Properties set
reflecting the configuration
environment defined by this
source.

init String[] args_ abstract void Concrete facility classes define
this method to perform
initialization operations. The
input arguments is the args_
array provided to main().

fini none abstract void Concrete application classes
define this method to perform
finalization operations.

getPropertyNames String domain_, String[]
subdomains_

Enumeration Returns an enumeration to all of
the available property names
contained in this configuration
source.

refresh none abstract void Refreshes the configuration
source. This method enables the
ability to dynamically update
configuration information
without restarting the JVM.

4.5.5.1.7 GrndsPropertyFileSource Class

Class Name: GrndsPropertyFileSource
Component: Configuration
Description: This class defines a concrete configuration source based on Java property files. It

implements the GrndsConfigurationSource interface.
Package: org.grnds.facility.config
Superclass: org.grnds.foundation.GrndsObject

Attribute Type Description

Con/Destructors Arguments

(Type, Name)
Description

GrndsPropertyFileSource ClassLoader loader_ Primary Constructor - builds a

GrndsPropertyFileSource instance with the given
ClassLoader object.

GrndsPropertyFileSource GrndsPropertyFileSource rhs_ Copy Constructor

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 79

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Private:
createSubDomainString String[] subdomains_ static String Returns a StringBuffer populated

with a leading
DOMAIN_SEPARATOR,
followed by each subdomain
separated by
DOMAIN_SEPARATOR. An
empty StringBuffer object is
returned if either subdomains_ is
null or contains zero elements.

findEnvironment String domain_, String
subdomains_, ClassLoader
loader_

Properties Finds the environment
properties file.

getResourceAsStream String name_, ClassLoader
loader_

InputStream Returns the resource as an input
stream.

Public:
clone none abstract Object Clones the current

GrndsSystemPropertySource.
getEnvironment String domain_,

String[] subdomains_
GrndsConfigurati
onEnvironment

Returns a Properties set
reflecting the configuration
environment defined by this
source.

init String[] args_ abstract void Concrete facility classes define
this method to perform
initialization operations. The
input arguments is the args_
array provided to main().

fini none abstract void Concrete application classes
define this method to perform
finalization operations.

getPropertyNames String domain_, String[]
subdomains_

Enumeration Returns an enumeration to all of
the available property names
contained in this configuration
source.

refresh none abstract void Refreshes the configuration
source. This method enables the
ability to dynamically update
configuration information
without restarting the JVM.

4.5.5.1.8 GrndsXmlFileSource Class

Class Name: GrndsXmlFileSource
Component: Configuration
Description: This class defines a concrete configuration source based on XML files.
Package: org.grnds.facility.config
Superclass: org.grnds.foundation.GrndsObject

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 80

Attribute Type Description

Private:
m_loader ClassLoader The class loader for the XML file.

m_configDocument String The configuration document for the XML file.

m_configMap Hashtable dialect, SourceEntry

m_saxDriverClass String The SAX driver to be used to parse the XML

m_validateDocuments boolean True is the document should be validated. False if
the document should not be validated.

m_isInitialized boolean True if the class has been initialized. False if the
class has not been initialized.

Con/Destructors Arguments
(Type, Name)

Description

GrndsXmlFileSource String configMap_, ClassLoader
loader_

Builds a GrndsXmlFileSource instance with the
config map identifying the XML configuration map
that associates XML configuration documents with
configuration domains/subdomains. The default
GrndsXmlReader SAX driver is used and
document validation is turned off.

GrndsXmlFileSource String configMap_, String
saxDriverClass_, ClassLoader
loader_

Builds a GrndsXmlFileSource instance with the
config map. The second argument identifies the
desired XML SAX parser. Document validation is
turned off.

GrndsXmlFileSource String configMap_, boolean
validateDocuments_, ClassLoader
loader_

Builds a GrndsXmlFileSource instance with the
config map. The default GrndsXmlReader SAX
driver is used. The second argument directs
whether validation should be performed.

GrndsXmlFileSource String configMap_, String
saxDriverClass_, boolean
validateDocuments_, ClassLoader
loader_

Builds a GrndsXmlFileSource instance with the
config map. The second and third arguments
identify the desired XML SAX parser and whether
validation should be performed.

GrndsXmlFileSource GrndsXmlFileSource rhs_ Copy Constructor

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions Thrown)

Description

Private:
initConfigurationMap none void Initializes the configuration

map
setSourceEntry String key_, SourceEntry

newEntry_
void Set the entry source for the

configuration map.
parseDomainEnvironment Element domainEnv_, String

basename_
void Parses the domain values in

the XML file.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 81

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions Thrown)

Description

populateDomainEntries GrndsConfigurationEnvironm
ent env_, Enumeration
domainEntries_

void Populate the domain entries
into the environment.

getSourceLoadStrategy Element source_ SourceLoadStrategy Retrieve the source load
strategy for the XML file.

Public:
clone none abstract Object Clones the current

GrndsXmlFileSource object
setFileSourceDialect String domain_, String[]

subdomains_, String
absoluteFilename_, Class
dialect_

void Sets the XML dialect and file
source (by absolute filename)
for the given configuration
domain/subdomains.

setResourceSourceDialect String domain_, String[]
subdomains_, String
resourceName_, Class
dialect_,

ClassLoader cl_

void Sets the XML dialect and
source (by class loader
resource) for the given
configuration
domain/subdomains.

setUrlSourceDialect String domain_, String[]
subdomains_, String
resourceUrl_, Class dialect_

void Sets the XML dialect and URL
source for the given
configuration
domain/subdomains.

getEnvironment String domain_, String[]
subdomains_

GrndsConfiguration
Environment

Returns a configuration
environment object reflecting
the configuration environment
defined by this source.

init String[] args_ void Initializes the XML file source
fini none void Finalizes the XML file source.
refresh none synchronized void Refreshes the configuration

source.
doToString none String Coverts object to string.
buildSourceKey String domain_, String[]

subdomains_
static String Builds the source key for the

XML file.

4.5.5.1.9 GrndsDatabaseSource Class

Class Name: GrndsDatabaseSource
Component: Configuration
Description: This class defines a concrete configuration source based on database tables. It

implements the GrndsConfigurationSource interface.
Package: org.grnds.facility.config
Superclass: GrndsObject

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 82

Con/Destructors Arguments

(Type, Name)
Description

GrndsDatabaseSource ClassLoader loader_ Primary Constructor - builds a

GrndsDatabaseSource instance with the given
ClassLoader object.

GrndsDatabaseSource GrndsDatabaseSource rhs_ Copy Constructor

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Private:
createSubDomainString String[] subdomains_ static String Returns a StringBuffer populated

with a leading
DOMAIN_SEPARATOR,
followed by each subdomain
separated by
DOMAIN_SEPARATOR. An
empty StringBuffer object is
returned if either subdomains_ is
null or contains zero elements.

findEnvironment String domain_, String
subdomains_, ClassLoader
loader_

Properties Finds the environment
properties file.

Public:
clone none abstract Object Clones the current

GrndsDatabaseSource.
getEnvironment String domain_,

String[] subdomains_
GrndsConfigurati
onEnvironment

Returns a Properties set
reflecting the configuration
environment defined by this
source.

init String[] args_ abstract void Concrete facility classes define
this method to perform
initialization operations. The
input arguments is the args_
array provided to main().

fini none abstract void Concrete application classes
define this method to perform
finalization operations.

getPropertyNames String domain_, String[]
subdomains_

Enumeration Returns an enumeration to all of
the available property names
contained in this configuration
source.

refresh none abstract void Refreshes the configuration
source. This method enables the
ability to dynamically update
configuration information
without restarting the JVM.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 83

4.5.5.1.10 GrndsConfigurationException

Class Name: GrndsConfigurationException
Component: Configuration
Description: This class may be thrown while processing the configuration environment.
Package: org.grnds.facility.config
Superclass: org.grnds.foundation.exception.GrndsRuntimeException

Attribute Type Description

Con/Destructors Arguments

(Type, Name)
Description

GrndsConfigurationException none Default Constructor.

GrndsConfigurationException String msg_ Creates GrndsConfigurationException with a

message.
GrndsConfigurationException String msg_, Throwable error_ Creates GrndsConfigurationException with a

message an root exception.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 84

4.5.6 Class Diagram

4.5.6.1 Configuration Classes

FileLoadStrategy
serialVersionUID : long = - 4305553531210567507L
m_filename : String

FileLoadStrategy()
execute()
equals()
hashCode()
doToString()

ResourceLoadStrategy
serialVersionUID : long = 1815363281650247789L
m_resourceName : String

ResourceLoadStrategy()
execute()
equals()
hashCode()
doToString()

UrlLoadStrategy
serialVersionUID : long = - 8288551945469578987L
m_url : String

UrlLoadStrategy()
execute()
equals()
hashCode()
doToString()

SourceEntry
serialVersionUID : long = - 9209860728477214070L

SourceEntry()
SourceEntry()
clone()
getSourceDocument()
getDialectClass()
equals()
hashCode()
doToString()

SourceLoadStrategy

execute()

GrndsConfiguration

GRNDS_CONFIG_DOMAIN : String = "grnds"
serialVersionUID : long = - 73693695853041320L
m_isInitialized : boolean

getInstance()
parseSubdomainArray()
setInstance()
GrndsConfiguration()
GrndsConfiguration()
GrndsConfiguration()
clone()
contains()
contains()
getEnvironment()
getEnvironment()
getProperty()
getProperty()
init()
fini()
refresh()
addSource()
getSources()
hashCode()
createKey()
findCachedEnvironment()
doToString()
doInitSources()
doFiniSources()
makeExpirationPlan() -$ms_instance

GrndsConfigurationSource

serialVersionUID : long = - 6059957899114310523L

clone()
getEnvironment()

init()
fini()

refresh()

GrndsSystemPropertySource
serialVersionUID : long = - 1341099127207626185L

GrndsSystemPropertySource()
GrndsSystemPropertySource()
clone()
getEnvironment()
getPropertyNames()
init()
fini()
refresh()

GrndsPropertyFileSource

serialVersionUID : long = - 6032646498913513599L
DOMAIN_SEPARATOR : char = '_'
PROPERTIES_EXT : String = ".properties"

GrndsPropertyFileSource()
GrndsPropertyFileSource()
clone()
getEnvironment()
getPropertyNames()
init()
fini()
refresh()
doToString()
createSubdomainString()
findEnvironment()
getResourceAsStream()

GrndsXmlFileSource
serialVersionUID : long = 1357007038854926156L
DOMAIN_SEPARATOR : char = '.'
m_configDocument : String
m_saxDriverClass : String
m_validateDocuments : boolean
m_isInitialized : boolean

GrndsXmlFileSource()
GrndsXmlFileSource()
GrndsXmlFileSource()
GrndsXmlFileSource()
GrndsXmlFileSource()
clone()
setFileSourceDialect()
setResourceSourceDialect()
setUrlSourceDialect()
getEnvironment()
init()
fini()
refresh()
doToString()
buildSourceKey()
initConfigurationMap()
setSourceEntry()
parseDomainEnvironment()
populateDomainEntries()
getSourceLoadStrategy()

GrndsConfigurationException
seri alVersi onUID : long = 5423391575691868852L

GrndsConfigurationException()
GrndsConfigurationException()
GrndsConfigurationException()

GrndsConfigurationEnvironment

serialVersionUID : long = 1810234610586207507L

GrndsConfigurationEnvironment()
GrndsConfigurationEnvironment()
clone()
hashCode()
equals()
putAll()
getConfigurationObject()
getConfigurationObject()
getConfigurationObjects()
addConfigurationObject()
toString()

GrndsDatabaseSource

Gr ndsD atabaseSource()
Gr ndsD atabaseSource()
clone()
getEnvironment()
init()
fini()
getPropertyNames()
refresh()

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 85

4.5.7 Sequence Diagram

4.5.7.1.1 Static Initializer

FSAConfiguration PropertyResource
Bundle

FSAXmlResource
Bundle

 :
GrndsConfiguration

 :
GrndsPropertyFileSource

 :
GrndsXmlFileSource

 :
GrndsDatabaseSource

1: propertyBundle = getBundle("masterconfig")

2: xmlBundle = getBundle("masterconfig")

3: getInstance

4: loader = getClass().getClassLoader()

5: propertySource = GrndsPropertyFileSource(loader)

6: addSource(propertySource)

8: addSource(xmlSource)

7: xmlSource = GrndsXmlFileSource(loader)

1. The static i nitializer
creates a P roperty
ResourceBundle to load the
maste r domain file.

2. The static i nitializer
creates a FSAXml
ResourceBundle to load the
maste r domain file.

3. Get an instance of the
GrndsConfi guration class

4. Re trieve the class loader
to pass to the file source
configuration classes.

9: databaseSource = GrndsDatabaseSource(loader)

10: addSource(databaseSource)

5. Cre ates a property fi le
source object, which will be
added to the configuration.

6. Adds the property file
source to the configuration
envi ronment.

7. Cre ates an xml fi le source
object, which wi ll be added
to the configuration.

8. Adds the xml file source to
the configuration
envi ronment.

9. Cre ates a database so urce
object, which wi ll be added
to the configuration.

10. Adds the database source
to the configuration
envi ronment.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 86

4.5.8 Data Model

This diagram depicts the data model that will be used for configuration parameters
stored in database tables. The domain id of 1 will be considered the master domain.

CONFIG

property_id number(10)
domain_id number(10)

PROPERTY

property_id number(10)
property_key varchar2(100)
property_value varchar2(250)

PROPERTY_DOMAIN

domain_id number(10)
domain_name varchar2(100)
parent_id number(10)

1

many

1

many

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 87

4.5.9 References

• GRNDS Framework

https://onesource.accenture.com

• Sun Java website

http://java.sun.com

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 88

4.6 XML Helper

4.6.1 Purpose

This section covers the components that comprise the XMLHelper Framework. The
XMLHelper framework includes custom code by the RCS developers as well as code
provided by the Accenture’s GRNDS initiative and the open-source framework Castor --
(http://www.castor.org).

GRNDS is an Accenture led initiative to build reusable Java based frameworks that can
be customized to fit various requirements. In this case GRNDS provides the ability to
read XML documents using the Document Object Model (DOM) API. The GRNDS
provides propertiesPlus Object, uses the DOM API authored by the W3C standards
group to read and manipulate XML documents. The DOM API standard aims to make a
platform and language neutral program interface to documents so that programmers
may focus on their programming model and not worry about document reading or
editing.

Castor provides immediate instantiation of Java objects directly from XML documents
and allows developers to build XML documents from in-memory Java objects. Castor
XML is an XML data-binding framework that is unlike the two main XML APIs, DOM
(Document Object Model) and SAX (Simple API for XML). The DOM and SAX API’s deal
with the structure of an XML document, Castor enables manipulation of the data defined
in an XML document through an object model which represents that data.

While both of these frameworks make use of many Java features and packages that are
provided by the Sun Java Development kit 1.2.2, these topics are not covered in depth.
Consult the Sun web site for more detailed information.

4.6.2 System Overview

In the past, FSA applications have used XML documents in various ways. FSA
applications have had a need to parse XML documents for application initialization, error
messages, and argument or parameter changes. In solving these issues, several standard
XML parsers have become known in the last few years. The Document Object Model
(DOM) and the Simple API for XML are currently the two most popular API’s for
manipulating XML documents. The DOM API, which was developed by the standards
group, the World Wide Web Consortium (W3C), builds an in-memory tree like structure
that represents the XML document. The DOM API allows developers to move up and
down the branches of the DOM tree requesting and reviewing data.

The SAX API uses an event-based stream to parse the XML document. As the SAX API
uncovers XML tokens, it presents these tokens to the parser. The parser then generates

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 89

events at known points within the document. It is up to the developer to decide what to
do when these events are generated. An example of a SAX event would be at the start
and end of a document, the start and end of an element when it finds characters within
the element. Both API’s have their strengths and weaknesses.

 In the development process, the DOM parser would be implemented when

• The XML document’s structure must be known

• Parts of the XML document must be manipulated or moved within the document,

such as a bubble sort

• The XML document’s information needs to used more than once

In the development process, the SAX parser would be implemented when

• Extreme machine limitations such as memory or CPU exist

• A few elements of the XML need to be extracted

• Using the XML document’s information only once

The SAX Parser is pressed into duty in instances where a search for key words within an
XML document is necessary. For example, if a sort for all elements within an XML
document were to be conducted, then holding the DOM tree within memory is a
reasonable technique; however, if the desired result were to find the number of occasions
in which a word appeared in an XML document, then holding the entire DOM tree
within memory is not a sensible measure.

The main purpose of the DOM and SAX API’s is to access and manipulate the structure
of an XML document. Another need within the XML community is to manipulate the
data defined within the XML document. Several products have emerged that perform
data binding from an XML document to a Java Object. Castor and Java Architecture for
XML Binding (JAXB) are both Java API’s that are leading the charge for XML Data
Binding frameworks. These frameworks will compile and build Java objects from XML
documents, as well as create of a Java object in memory and output the equivalent XML
document. JAXB is Sun’s interpretation for Data binding. This specification is very new
and has not been finalized. The final draft of JAXB v1.0 is due near the end of 2002.
Castor is the parent of JAXB and as such is much more stable and encompasses a larger
number of features.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 90

4.6.3 Design Considerations

4.6.3.1 Assumptions and Dependencies

It is assumed that this framework will function in a J2EE application server environment. As the
current production server for FSA is IBM WebSphere 3.5.X, the framework will be compiled
using its required JDK version 1.2.2. It should also work with the current JavaServer Pages (1.1),
Java Servlet (2.2), and Java Database Connectivity (2.0) specifications for this server. It will be
built and tested on Sun Solaris 2.6 and HP-UX 11.0. While this framework will be built using
these product versions, it will be built in accordance with J2EE standards and to support
product upgrades.

4.6.3.2 Goals and Guidelines

The goal of this development is to provide a simple yet robust XMLHelper Framework
that encompasses the three different parsing faculties specified above. Any FSA
development team building applications in a Java environment can easily utilize these
parsing capabilities. Most FSA applications teams are implementing some type of XML
parser that helps simplify the development and maintenance of respective applications.
By establishing the standard of a single XML helper framework, development cycles are
abbreviated and best practices for XML data manipulation are included in the framework
to be used by all development teams.

The FSA Application Operations Groups needs to have the ability to trace and debug
problems related to the XML Helper Framework. To this end the ITA RCS Logging and
Exception Handling Framework will be used to document any errors that the XMLHelper
Framework encounters.

A final goal is to ensure that the performance of the XMLHelper Framework does not
hinder the performance of the application using it. Part of the release process of ITA RCS
Frameworks is to ensure optimal performance. This is accomplished by conducting
performance tests and documenting performance results.

4.6.3.3 Development Methods

The development of this framework entails the use of general object-oriented software
development techniques as specified in any standard text on the Java programming
language. The design of this framework’s class and relationship patterns did not require
the use of an object oriented modeling tool or methodology. However, the resulting class
files have been documented with standard class diagrams and sequence diagrams using
Rational Rose in order to illustrate their structure more readily. These diagrams
(included below) will assist programmers unfamiliar with this framework.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 91

4.6.4 System Architecture

The RCS XML Helper Framework makes use of a wrapper class called FSAXMLHelper
that will encompass several XML parsing classes that implement DOM Level 2 parsing,
SAX 2.0 parsing and XML data-binding.

4.6.4.1 Subsystem Architecture: FSAXMLHelper

This class provides a simplified interface to the entire XML Helper framework. Several
parse methods are provided depending on whether the developer requires the use of
DOM parsing, SAX parsing or Castor Java Binding. This class inherits from the
FSADomXml class to gain access to the many methods already deployed within
FSADomXml. The following code sample illustrates the different parse methods and
what architecture they are tied to.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 92

FSAXMLHelper xmldom = FSAXMLHelper();
FSAXMLHelper xmlsax = FSAXMLHelper();
FSAXMLHelper xmlbind = FSAXMLHelper();
// illustration of a DOM parse
xmldom.parse(“/www/test/properties/dom.xml”) ;
// illustration of a SAX parse
xmlsax.parse(“/www/test/properties/sax.xml”,handler);
//illustration of a DataBind parse
xmlbind.parse(“/www/test/properties/mapping.xml”,” /www/test/properties/data.xml”);

4.6.4.2 Subsystem Architecture: FSADomXml

This is the FSA class that implements DOM levels 1 and DOM levels 2 of the W3C
specifications for parsing XML. The W3C specifications are final and can be implemented
without concern for future specification changes. While the DOM standard defines many
XML components, these are the most commonly used:

• Element: Elements consist of a start tag, an end tag and the content in between. The

content is text based inside the XML document but once parsed it can be converted to
anything

• Attribute: Elements use attributes to help describe the element. The attribute needs to

be quoted. <car color=”green”>volvo</car>

• Document: Represents the entire XML document

Besides parsing the XML document, the ITA XMLHelper framework simplifies the
retrieval of internal elements and the element text values by storing them within a hash
table that is within a FSADomXml object. If an element contains other elements within it,
then the deeper elements will be within another FSADomXml object that is embedded
within the original FSADomXml object.

<?xml version="1.0"?>
<Arguments Number=”1”>
<Arg0 Type="String" Content="Hello There"> </Arg0>
<Arg1 Type="integer" Content="1"> </Arg1>
<Arg2 Type="List" Content="one two three four"> </Arg2>
<Arg3>Hello</Arg3>
</Arguments>

In the previous XML file, Arg0, Arg1, Arg2 and Arg3 are recognized as element keys and
are stored in the FSADomXml hash table. Number is an attribute key but is still within
the same FSADomXml hash table. If a developer needed access to the attribute key Type,

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 93

which is below the key Arg0, then that developer would have to drill down on the
PropertiesPlus object using the FSADomXml public method getNextDomObject(key) and
passing the key Arg0. This will pass back the FSADomXml object that has the hash table
that holds the value for Type and Content. Then using the public methods getString, the
developer could get the value for Type.

4.6.4.3 Subsystem Architecture: FSASaxXml

This is the FSA class that implements the SAX API. The SAX API initiates an event
handler when an event occurs. Common Events are:
� StartDocument

� EndDocument

� StartElement

� EndElement

� Character

When these events occur, the SAX API launches the respective handler method that
corresponds to the event. A developer will use the FSASaxApi by building a customized
handler class and then inputting that handler into the public parse(xml,handler) method.
This allows the developer to customize the FSA Sax API to fit the application needs. An
example of a customized handler is below. The customized handler class is called
FSASaxHandlers and it must be a subclass of FSASaxHandler.

FSAXMLHandler it = new FSAXMLHandler();
 try {
 FSASaxHandlers handler = new FSASaxHandlers();
 it.parse("d:/www/test/properties/example.xml",handler);
 } catch (Exception e) {
 System.err.println(e);
 }
 }

package gov.ed.fsa.ita.schedule.example;
import gov.ed.fsa.ita.xmlhelper.*;
import gov.ed.fsa.ita.schedule.*;
import gov.ed.fsa.ita.schedule.example.*;
import java.util.*;
import java.io.*;
import java.lang.*;
public class FSASaxHandlers extends FSASaxHandlers{
public FSASaxHandlers() {
 super();

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 94

}

public void endDocument() {
 System.out.println("End document in customized handler class");}

public void startDocument() {
 System.out.println("Start document in customized class");
 }
}

4.6.4.4 Subsystem Architecture: FSADataBind

The FSADataBind class provides a data-binding ability, which allows developers to deal
with data that is defined within XML document through an object model, which
represents the data. The FSADataBind class can marshal any bean-like Object from and
to XML. In all cases the framework uses class and field descriptors that are described
within a separate mapping XML document that defines the attributes of the class. This
mapping XML document defines the type of the attribute and how the attribute should
be loaded. The attributes can be populated either by a value directly inputted from the
XML document or may be populated by a get method. A second XML document actually
defines the values of the Java Object. Thus by calling the public method parse
(mapping.xml,data.xml), a developer can instantiate a Java Object defined within the data
XML file, as demonstrated by the following example.

FSAXMLHelper xmlbind = new FSAXMLHelper();
 FSAScheduleEntry E = new FSAScheduleEntry();
 E = (FSAScheduleEntry) xmlbind.parse("/www/test/properties/mapping.xml",
"/www/test/properties/schedule.xml");

In this example, the class and attribute definitions are defined within the mapping.xml
and the actual values are defined within schedule.xml. The actual XML documents are
below.

<?xml version="1.0"?>
<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Object Mapping DTD Version 1.0//EN" "mapping.dtd">
<mapping>
 <class name="gov.ed.fsa.ita.schedule.FSAScheduleEntry">
 <map-to xml="SEntry"/>
 <field name="m_classname"
 type="java.lang.String"
 direct="true">
 <bind-xml name="Classname" node="element"/>
 </field>
 <field name="m_methodname"
 type="java.lang.String"
 direct="true">

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 95

 <bind-xml name="Methodname" node="element"/>
 </field>
 </class>
</mapping>

<SEntry>
 <Classname>gov.ed.fsa.ita.schedule.test.SchFire</Classname>
 <Methodname>method2</Methodname>
</SEntry>

4.6.4.5 SubSystem Architecture: ITA RCS Logging and Exception Handling Framework

The RCS Logging and Exception Handling frameworks have been added to the RCS
XMLHelper framework to enhance debugging and tracing abilities. This should benefit
operations ability to isolate problems that may occur within the framework.

4.6.5 Detailed System Design

4.6.5.1 Component Definitions

4.6.5.1.1 FSAXMLHelper

Class Name: FSAXMLHelper
Component: XML Helper
Description: Public class
Package: gov.ed. fsa.ita.xmlhelper
Superclass: FSADomXml

Con/Destructors Arguments
(Type, Name)

Description

FSAXMLHelper none Constructor

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
getNextDomObject (Object key)

FSADomXml
throws
FSAException

Looks for next FSADomXML
object that would exist inside
present one.

parse (String mapping, String data) Void
throws
FSAException

Instantiated XML file into Java
Objects using a mapping file to
describe the object and the data
file to describe the values of the
java object.

parse (String saxfile, SchSaxHandlers
handler)

Void
throws
FSAException

Uses the SAX API parser to parse
an XML Document using level 2
Sax.

parse (String domfile) Void
throws
FSAException

Uses the DOM API parser to
parse an XML Document using
level 2 Dom.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 96

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

write (Object classname, String
maploc, String writeloc)

Void
throws
FSAException

Using the castor framework, will
marshal a Java object to a XML
document.

4.6.5.1.2 FSADomXml

Class Name: FSADomXml
Component: XML Helper
Description: Public class
Package: gov.ed. fsa.ita.xmlhelper
Superclass: java.util.HashTable

Con/Destructors Arguments

(Type, Name)
Description

FSADomXml none Constructor

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
attributeKeys None Enumeration

Throws
FSAException

Returns a enumeration of
Attribute Keys relating to current
FSADomXml Object.

elementKeys None Enumeration
Throws
FSAException

Returns a enumeration of
Element Keys relating to current
FSADomXml Object.

GetList (String key)

String
Throws
FSAException

Returns the value of the key
element in a list format.

GetString (String key) Void
Throws
FSAException

GetObject (String key) Void
Throws
FSAException

4.6.5.1.3 FSASaxXml

Class Name: FSASaxXml
Component: XML Helper
Description: Public class
Package: gov.ed. fsa.ita.xmlhelper
Superclass: DefaultHandler

Con/Destructors Arguments
(Type, Name)

Description

FSASaxXml none Constructor

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 97

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
Parse (String xmlfile)

Void
Throws
FSAException

Parseas XML document using
the SAX API and default
handlers.

Parse (String
xmlfile,FSASaxHandlers)

Void
Throws
FSAException

Parses XML document using the
SAX API and user custom
handlers.

4.6.5.1.4 FSADataBind

Class Name: FSADataBind
Component: XML Helper
Description: Public class
Package: gov.ed. fsa.ita.xmlhelper
Superclass: Object

Con/Destructors Arguments

(Type, Name)
Description

FSADataBind none Constructor

Methods Arguments

(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
parse (String mapfile, String datafile)

Object
Throws
FSAException

Parses an XML document and
returns an instance of a Java
object that is defined by the
mapping class.

write (Object classfile,String mapfile,
String writeloc)

Void
Throws
FSAException

Marshals an instance of the
specified object to a XML
Document

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 98

4.6.6 Class Diagrams

FSAXMLHelper

FSAXMLHelper

FSAXMLHelper()
getNextDomObject(buf : Object) : FSADomXml
parse(xmldoc : String) : void
parse(uri : String, handle : FSASaxHandlers) : void
parse(mapXML : String, dataXML : String) : Object
write(xmlobject : Object, maploc : String, writeloc : String) : void

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 99

FSADomXml

FSADomXml

FSADomXml()
FSADomXml(pp_ : FSADomXml)
FSADomXml(rootLocalName_ : String, rootNamespaceURI_ : String)
FSADomXml(prop_ : Properties)
addList(key_ : FSAPpKey, value_ : List) : v oid
addList(key_ : String, value_ : List) : void
addObject(key_ : FSAPpKey, value_ : Object) : void
addObject(key_ : String, value_ : Object) : void
addPropertiesPlus(key_ : FSAPpKey, value_ : FSADomXml) : void
addPropertiesPlus(key_ : String, value_ : FSADomXml) : void
addString(key_ : FSAPpKey, value_ : String) : void
addString(key_ : String, value_ : String) : void
attributeKeys() : Enumeration
clear() : void
clone() : Object
elementKeys() : Enumeration
elementToObject(elem_ : Element) : Object
f romXML(in_ : InputStream) : FSADomXml
getList(key _ : FSAPpKey) : List
getList(key _ : String) : List
getObject(key_ : FSAPpKey) : Object
getObject(key_ : String) : Object
getProperties() : Properties
getPropertiesPlus(key_ : FSAPpKey) : FSADomXml
getPropertiesPlus(key_ : String) : FSADomXml
getProperty(key_ : String) : String
getRootLocalName() : String
getRootNamespaceURI() : String
getSection(key_ : String) : FSADomXml
getString(key_ : FSAPpKey) : String
getString(key_ : String) : String
hasPropertiesPlusValue(key_ : Object) : boolean
hasSingleValue(key_ : Object) : boolean
hasStringValue(key_ : Object) : boolean
keys() : Enumeration
loadProperties(in_ : InputStream) : void
loadXML(in_ : InputStream) : void
mergeIn(pp_ : FSADomXml) : void
mergeIn(prop_ : Properties) : void
output(key_ : FSAPpKey, value_ : FSAPpValue, pm_ : FSAPpPrefixMapper, writer_ : PrintWriter, indent_ : String) : void
outputLst(key_ : FSAPpKey, list_ : List, pm_ : FSAPpPrefixMapper, writer_ : PrintWriter, indent_ : String) : void
outputPp(key_ : FSAPpKey, pp_ : FSADomXml, pm_ : FSAPpPrefixMapper, writer_ : PrintWriter, indent_ : String) : void
outputStrAttr(key_ : FSAPpKey, value_ : String, pm_ : FSAPpPrefixMapper, writer_ : PrintWriter, indent_ : String) : void
outputStrElem(key_ : FSAPpKey, value_ : String, pm_ : FSAPpPrefixMapper, writer_ : PrintWriter, indent_ : String) : void
privAdd(key_ : FSAPpKey, obj_ : Object) : void
privAdd(str_ : String, obj_ : Object) : void
privPut(key_ : FSAPpKey, obj_ : Object, isAttribute_ : boolean) : Object
privPut(str_ : String, obj_ : Object, isAttribute_ : boolean) : Object
put(key_ : Object, value_ : Object) : Object
putAll(m_ : Map) : v oid
putList(key _ : FSAPpKey, value_ : List) : Object
putList(key _ : String, value_ : List) : Object
putObject(key_ : FSAPpKey, value_ : Object) : Object
putObject(key_ : String, value_ : Object) : Object
putPropertiesPlus(key_ : FSAPpKey, value_ : FSADomXml) : Object
putPropertiesPlus(key_ : String, value_ : FSADomXml) : Object
putString(key_ : FSAPpKey, value_ : String) : Object
putString(key_ : String, v alue_ : String) : Object
remov e(key_ : Object) : Object
setProperty(key_ : String, value_ : String) : Object
store(out_ : OutputStream, header_ : String) : void
uncheckedPut(key_ : Object, value_ : Object) : Object

FSAXMLHelper

FSAXMLHelper()
getNextDomObject(buf : Object) : FSADomXml
parse(xmldoc : String) : void
parse(uri : String, handle : FSASaxHandlers) : void
parse(mapXML : String, dataXML : String) : Object
write(xmlobject : Object, maploc : String, writeloc : String) : void

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 100

FSASaxXml

FSADataBind

FSASaxXml

FSASaxXml()
parse(uri : String) : void
parse(uri : String, handle : FSASaxHandlers) : void

FSASaxHandlers

FSASaxHandlers()
characters(ch : char[], start : int, length : int) : void
endDocument() : void
endElement(uri : String, name : String, qName : String) : void
startDocument() : void
startElement(uri : String, name : String, qName : String, atts : Attributes) : void

FSADataBind

FSADataBind()
parse(mapXML : String, scheduleXML : String) : Object
write(xmlobject : Object, mapfile : String, writefile : String) : void

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 101

4.6.7 Sequence Diagrams

This sequence illustrates the interaction between a client object and FSADomXml object
to parse an XML document using the DOM API.

 : FSADomXmlClient :
FSAXMLHelper

1. Create a FSAXMLHelper Object

1.2. Load and Parse the XML document into a
FSADomXml object.
 (Hashtable inside FSADomXml object)

2. Retrieve Element keys within the
FSADomXml Object

3. Get value associated with Keys
that were retrieved above

1. FSAXMLHelper()

2. elementKeys()

3. getList(String)

 : InputStream

1.1. InputStream()

1.2. loadXML(InputStream)

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 102

This sequence illustrates the interaction between a client object and FSASaxXml object to
parse an XML document using the SAX API.

 :
FSAXMLHelper

Client : FSASaxXml :
FSASaxHandlers

1.0 Build the custom handlers that will
perform the work when a XML element is
discovered
2.0 Build an instance of SFAXMLHelper

3.0 The parse() method is called with
the name of the XML document and a
variable that represents the
customized handler object.

4-7 As the Sax API encounters the
different elements in the XML
document, different handler methods
will be called.

1. FSASaxHandlers()

3. parse(String, FSASaxHandlers)

3.1. parse(String, FSASaxHandlers) 4. startDocument()

5. startElement(String, String, String, Attributes)

6. endElement(String, String, String)

7. endElement(String, String, String)

2. FSAXMLHelper()

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 103

This sequence illustrates the interaction between a client object and FSADataBind object
using a Field Descriptor XML document and a Class data XML document.

 : FSADataBind : Mapping : UnmarshallerClient :
FSAXMLHelper

1.0 Client calls
parse(String,String) with
the Field descriptor XML
document and the data XML
document defined in the
arguments

1.2 parse() builds a new
mapping object that maps the
field descriptor defined in the
field descriptor XML document
to the data defined in the data
XML document.

1.2.2 - 1.2.4 The load
Mapping() method loads the
field descriptor XML document.
The unmarshal method actual
builds the Java Object from the
data XML Document

1. parse(String, String)

1.2. parse(String, String)
1.2.1. Mapping()

1.2.2. loadMapping(String)

1.2.3. Unmarshaller(Mapping)

1.2.4. unmarshal(InputSource)

1.1. FSADataBind()

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 104

4.6.8 References

• Castor XML Parsing Framework

http://www.castor.org/

• XML Binding (JAXB)

http://java.sun.com/xml/jaxb/

• World Wide Web Consortium

http://www.w3.org/

• Sun Java web site

http://java.sun.com/

• Sax Project

http://www.saxproject.org/

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 105

4.7 JSP Tag Library

4.7.1 Purpose

The purpose of the ITA RCS JSP tag library framework is to provide a set of custom tags
for developers to utilize to simplify, standardize, and extend the use of JSP tag libraries
within the J2EE standard.

4.7.2 System Overview

The RCS JSP Tag Library framework is created using the Java programming language.
The tag library framework provides a collection of commonly used JSP custom tag
libraries for JSP developers to access. The JSP Tag Library framework is comprised of
libraries leveraged from the Jakarta Struts framework, Apache Taglibs project, and
custom developed libraries.

The following is a list of JSP tag libraries provided in this framework:

• Jakarta Struts Bean Taglib - contains custom JSP tags used to define new beans
from a variety of sources and to render bean or bean property output response

• Jakarta Struts HTML Taglib - contains JSP custom tags useful in creating dynamic

HTML user interfaces, including input forms

• Jakarta Struts Logic Taglib – contains tags useful in managing conditional
generation of output text, looping over object collections for repetitive generation
of output text, and application flow management

• Jakarta Struts Template Taglib - contains tags that are useful in creating dynamic
JSP templates for pages that share a common format

• Jakarta DateTime Taglib - contains tags that can be used to handle date and time

related functions

• Jakarta I18N Taglib - contains tags that help manage the complexity of creating
multi-lingual web applications

• Jakarta Input Taglib – contains tags that present HTML <form> elements tied to
the ServletRequest. Can be used to pre-populate form elements with prior values
that the user has chosen or with default values

• Log Taglib – is used to embed logging calls in JSP using the Logging Framework

• Jakarta Page Taglib – contains tags that can be used to access all of the
PageContext information of a JSP page provided ‘page’attributes

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 106

• Jakarta XSL Taglib – contains tags used to process an XML document with an XSL
stylesheet and incorporate the data in the page

• Jakarta XTags Taglib – contains custom tags for working with XML and
implements an XSLT-like language allowing XML to be styled and processed from
directly within a JSP. XTags is currently built on DOM4J foundation, an open
source XML framework for the Java platform.

4.7.3 Design Considerations

4.7.3.1 Assumptions and Dependencies

The tag library framework functions in a J2EE application server environment. As the
current production servers for FSA are running IBM’s WAS v. 3.5.3 and v. 3.5.5, the
framework will be compiled using its required JDK version 1.2.2. This framework is
compatible with the current JavaServer Pages (1.1), Java Servlet (2.2), Struts (1.0.1), and
Java Database Connectivity (2.0) specifications for this server. The tag library framework
will be built and fully tested on the Sun Solaris 2.6 and HP-UX 11.0 operating systems.
While this framework will be built using these product versions, it will be built in
accordance with J2EE standards and to support product upgrades.

4.7.3.2 Goals and Guidelines

The goal of the JSP tag library framework is to provide a simple yet robust framework
that may be utilized by FSA application teams conducting development in a Java
environment. The tag library framework provides development teams with easy access
to commonly used JSP custom tags.

Custom tags are extensions to the JSP language and are distributed in the form of a tag
library. Tag libraries encourage a separation of duties between application developers
and web designers, resulting in increased productivity by encapsulating recurring tasks
as reusable components.

4.7.3.3 Development Methods

The JSP Custom Tag Library framework leverages many taglibs that have been
developed by Apache. The tag libraries that will be developed by the ITA team will use
generally used object-oriented programming practices.

4.7.4 Detailed Design

4.7.4.1 Struts – Bean Taglib (Package: org.apache.struts.taglib.bean)

The "struts-bean" tag library contains JSP custom tags useful to defining new beans (in
any desired scope), from a variety of possible sources, as well as a tag to render a
particular bean (or bean property) to the output response. Detailed information for this
tag library can be found at:

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 107

http://jakarta.apache.org/struts/api-1.0/org/apache/struts/taglib/bean/package-summary.html.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 108

Class Description
CookieTag*2 Define a scripting variable based on the value(s) of the specified cookie received with this

request.

Define Tag* Define a scripting variable based on the value(s) of the specified bean property.

Header Tag* Define a scripting variable based on the value(s) of the specified header received with this
request.

IncludeTag* Define the contents of a specified intra-application request as a page scope attribute of type
String. If the current request is part of a session, the session id will be included in the generated
request, so the request will be a part of the same session.

MessageTag Retrieves an internationalized message string from the AcionResources object. This object is
stored as a context attribute in the associated ActionServlet implementation.

PageTag* Define a scripting variable that exposes the requested page context item both as a scripting
variable and a page scope bean.

ParameterTag* Define a scripting variable based on the value(s) of the specified parameter received with this
request.

ResourceTag* Define a scripting variable based on the contents of the specified web application resource.

SizeTag* Define a scripting variable that will contain the number of elements found in a specified array,
Collection, or Map.

StrutsTag* Define a scripting variable that exposes the requested Struts internal configuration object.

WriteTag Tag that retrieves the specified property of the specified bean, converts it to a String
representation (if necessary), and writes it to the current output stream, optionally filtering
characters that are sensitive in HTML.

4.7.4.2 Struts – HTML Taglib (Package: org.apache.struts.taglib.html)

The "struts-html" tag library contains JSP custom tags for creating dynamic HTML user
interfaces, including input forms. Detailed information for this tag library can be found
at: http://jakarta.apache.org/struts/api-1.0/org/apache/struts/taglib/html/package-summary.html.

Class Description
BaseFieldTag Convenience base class for the various input tags for text fields.

BaseHandlerTag Base class for tags that render form elements capable of including JavaScript even handlers
and/or CSS Style attributes.

BaseInputTag Abstract base class for the various input tags.

BaseTag Renders an HTML element with an href attribute pointing to the absolute location of the
enclosing JSP page. This tag is only valid when nested inside a head tag body. The
presence of this tag allows the browser to resolve relative URL's to images, CSS stylesheets

2 Note: * next to a tag indicates that the TagExtraInfo (TEI) implementation of the class is available (i.e..
CookieTag* means that there is a CookieTei. All TEI classes contain the method getVariableInfo, which
returns information about the scripting variable to be created).

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 109

and other resources in a manner independent of the URL used to call the ActionServlet.
There are no attributes associated with this tag.

ButtonTag Convenience base class for the various input tags for text fields.

CancelTag Tag for input fields of type "cancel".

CheckboxTag Tag for input fields of type "checkbox".

Constants Manifest constants for this package.

ErrorsTag Tag that renders error messages if an appropriate request attribute has been created.

FileTag Tag for input fields of type "file".

FormTag Tag that represents an input form, associated with a bean whose properties correspond to
the various fields of the form.

HiddenTag Tag for input fields of type "text".

HtmlTag Renders an HTML element with appropriate language attributes if there is a current Locale
available in the user's session.

ImageTag Tag for input fields of type "image".

ImgTag Generate an IMG tag to the specified image URI.

LinkTag Generate a URL-encoded hyperlink to the specified URI.

MultiboxTag Tag for input fields of type "checkbox".

OptionsTag Tag for creating multiple <select> options from a collection.

OptionTag Tag for select options.

PasswordTag Tag for input fields of type "text".

RadioTag Tag for input fields of type "radio".

ResetTag Tag for input fields of type "reset".

RewriteTag Generate a URL-encoded URI as a string.

SelectTag Tag that represents an HTML select element, associated with a bean property specified by
our attributes.

SubmitTag Tag for input fields of type "submit".

TextareaTag Tag for input fields of type "textarea".

TextTag Tag for input fields of type "text".

4.7.4.3 Struts – Logic Taglib (Package: org.apache.struts.taglib.logic)

The "struts-logic" tag library contains tags that for managing conditional generation of
output text, looping over object collections for repetitive generation of output text, and
application flow management. Detailed information for this tag library can be found at:
http://jakarta.apache.org/struts/api-1.0/org/apache/struts/taglib/logic/package-summary.html

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 110

Class Description
CompareTagBase Abstract base class for comparison tags.

ConditionalTagBase Abstract base class for the various conditional evaluation tags.

EqualTag Evaluate the nested body content of this tag if the specified variable and value are equal.

ForwardTag Perform a forward or redirect to a page that is looked up in the global ActionForwards
collection associated with the application.

GreaterEqualTag Evaluate the nested body content of this tag if the specified variable is greater than or
equal to the specified value.

GreaterThanTag Evaluate the nested body content of this tag if the specified variable is greater than the
specified value.

IterateTag* Custom tag that iterates the elements of a collection, which can be either an attribute or
the property of an attribute.

LessEqualTag Evaluate the nested body content of this tag if the specified variable is less than the
specified value.

LessThanTag Evaluate the nested body content of this tag if the specified variable is less than the
specified value.

MatchTag Evaluate the nested body content of this tag if the specified value is a substring of the
specified variable.

NotEqualTag Evaluate the nested body content of this tag if the specified variable and value are not
equal.

NotMatchTag Evaluate the nested body content of this tag if the specified value is not a substring of the
specified variable.

NotPresentTag Evaluate the nested body content of this tag if the specified value is not present for this
request.

PresentTag Evaluate the nested body content of this tag if the specified value is present for this
request.

RedirectTag Generate a URL-encoded redirect to the specified URI.

4.7.4.4 Struts – Template Taglib (Package: org.apache.struts.taglib.template)

The "struts-template" tag library contains tags that are useful for creating dynamic JSP
templates for pages that share a common format. Detailed information for this tag library
can be found at:
http://jakarta.apache.org/struts/api-1.0/org/apache/struts/taglib/template/package-summary.html

Class Description
GetTag Tag handler for <template:get>, which gets content from the request scope and either

includes the content or prints it, depending upon the value of the content's direct attribute.

InsertTag Tag handler for <template:insert>, which includes a template.

PutTag Tag handler for <template:put>, which puts content into the request scope.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 111

4.7.4.5 Date Taglib (Package: org.apache.taglibs.datetime)

The DateTime custom tag library contains tags, which can be used to handle date, and
time related functions. Tags are provided for formatting a Date for output, generating a
Date from HTML form input, using time zones, and localization. This is the Jakarta Page
Taglib Version 1.0 – Beta 1.

Class Description
AmPmsTag* Loops through all the am/pm strings so that they can be accessed by using the

standard JSP <jsp:getProperty> tag.

CurrentTimeTag Obtains the current time in milliseconds since Jan 1, 1970 GMT.

ErasTag* Loops through all the era (i.e., period of time) strings so that they can be accessed by
using the standard JSP <jsp:getProperty> tag.

FormatTag Format a Date for display.

MonthsTag* Loops through all the months of the year so that month names can be accessed by using
the standard JSP <jsp:getProperty> tag.

ParseTag Parses a Date string and output the time in ms.

TimeZonesTag* Loop through all the TimeZone's so that ID's and Display Names can be accessed by
using the standard JSP <jsp:getProperty> tag.

TimeZoneTag Sets the client TimeZone for the session as a script variable.

WeekdaysTag* Loops through the days of the week so that weekday names can be accessed by using
the standard JSP <jsp:getProperty> tag.

4.7.4.6 I18N Taglib (Package: org.apache.taglibs.i18n)

The i18n custom tag library contains tags that help manage the complexity of creating
multi-lingual web applications. These tags provide similar (though not identical)
functionality to the internationalization available in the Struts framework, but do not
require adopting the entire Struts framework.

Class Description
BundleTag* Implements an empty tag that allows developers to use a resource bundle to

internationalize content in a web page.

ConditionalTagSupport Provides the base implementation for the ifdef and ifndef tags.

FormatCurrencyTag Formats a Number instance using the current Locale and the Currency
NumberFormat.

FormatDateTag* Formats a Date instance using a Locale and either a DateFormat or a pattern based
SimpleDateFormat.

FormatDateTagSupport Abstract base class which supports the defaulting of the value to 'now' if no other value
is specified.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 112

is specified.

FormatDateTimeTag* Formats a Date instance using the default Date and Time formatter for the current
Locale.

FormatNumberTag* Formats a Number instance using a Locale and the NumberFormat or a
DecimalFormat if a pattern is specified.

FormatPercentTag* Formats a Number instance using the current Locale and the Percent
NumberFormat.

FormatStringTag* A simple tag that allows a String to be output with null handling.

FormatTagSupport An abstract base class for the formatting tags to provide implementation inheritance.

FormatTimeTag* Formats a Date instance using a Locale and the default time format.

IfdefTag This class implements a body tag that allows developers to use a resource bundle to
internationalize content in a web page. The ifdef tag allows the JSP author to
conditionally evaluate sections of a JSP based on whether a value is provided for the
given key.

IfndefTag Implements body tag that allows you to use a resource bundle to internationalize
content in a web page. The ifndef tag allows the JSP author to conditionally evaluate
sections of a JSP if a value is not provided for the given key.

LocaleTag* Defines a Locale context for use by other inner JSP tags.

MessageArgumentsTag Utilized inside a MessageTag to create an ordered list of arguments to use with
java.text.MessageFormat.

MessageTag* Implements a body tag that allows you to use a resource bundle to internationalize
content in a web page.

ResourceHelper Used by the locale and message tags for caching the ResourceBundle in the session and
request.

4.7.4.7 Input Taglib (Package: org.apache.taglibs.input)

The input tag extension library features the presentment of HTML <form> elements that
are tied to the ServletRequest calling the JSP page. Forms elements can be pre-populated
with prior values that the user has chosen -- or with default values for the first time user
of a web page. This is useful when the same page needs to be presented to the user
several times. Server-side validation is a good example of this process.

It is also possible to automatically build up <select> boxes, making it easier to build data-
driven forms. Even if the same page is presented multiple times, and the form elements
that have default values are desired, this library provides this functionality to free
programmers from writing extensive code.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 113

Class Description
Checkbox Implements the <input:checkbox> tag, which presents a check box form element.

Radio Implements the <input:radio> tag, which presents a radio button form element.

Select Implements the <input:select> tag, which presents a select form element.

Text Implements the <input:text> tag, which presents a text form element.

TextArea Implements the <input:textarea> tag, which presents a <textarea> form element.

4.7.4.8 Log Taglib (Package: gov.ed.fsa.ita.taglibs.log)

The Log library allows embedding logging calls in JSP using the ITA RCS logging
framework. This tag library is leveraged from the Jakarta Log tag extension library
except it uses the ITA RCSlogging framework instead of the log4j project.

Class Description
LogTag Logs a message to the current logging category (i.e., debug) using the RCS logging

framework.

4.7.4.9 Page Taglib (Package: org.apache.taglibs.page)

Used to access all of the information about the PageContext of a JSP page. This is the Jakarta
Page Taglib Version 1.0 – Beta 1. This tag library uses the <jsp:getProperty> tag that is not
supported by JSP 1.1, this implies that custom development may be required, therefore, leveraging
the sample provided by Jakarta may be necessary. Sample code is available on the Jakarta website
at: http://jakarta.apache.org/taglibs/doc/page-doc

Class Description
AttributeTag Used to output the value for a single PageContext attribute named with name.

AttributesTag* Accesses all of the PageContext information for a JSP page from the 'page' scoped
attributes. Loops through all of the attributes.

EqualsAttributeTag Determines if a PageContext attribute equals the value of the "match" tag attribute.
Includes the body of the tag if the attribute equals the value of the "match" tag attribute.

ExistsAttributeTag Determine if a PageContext attribute exists. Includes the body of the tag if the attribute
exists.

RemoveAttributeTag Removes a PageContext attribute with specified name from the body of the tag.

SetAttributeTag Sets a PageContext attribute name to a String from the body of the tag.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 114

4.7.4.10 XSL Taglib (Package: org.apache.taglibs.xsl)

With this custom tag library it is possible to process an XML document with an XSL
stylesheet and insert it in the document. XSL tag library acts as an example of custom tag
library code techniques, rather than actual production tags.

Interface Description
XSLProcessor This interface is implemented by the different XSL processes to ensure the process method

is called.

Class Description
ApplyTag Apply an XSL stylesheet to an XML data source, rendering the output to the writer of the

JSP page. This tag uses the Xalan XSLT processor.

ExportTag Export the content of the specified JSP bean (in the specified scope) to the output writer,
presumably after modifications have been completed.

ImportTag Import the content of the specified page, and assign it (as a String) to the specified
scripting variable in the specified scope.

IncludeTag Include the contents of the specified page at this point in the output. This tag is similar to
jsp:include, but does not cause the output to be sent directly to the servlet response.
Therefore, it can be used to capture the content of the page as body content of a
surrounding tag in which we are nested.

ShowSource Display the sources of the JSP file.

XalanXSLProcessor Xalan XSL Processor.

XSLProcessorFactory XSL processor factory.

4.7.4.11 XTags Taglib

XTags is a JSP custom tag library for working with XML. XTags implements an XSLT-
like language allowing XML to be styled and processed directly within a JSP page using
familiar XSLT and XPath techniques. XTags is similar to XSLT but implemented in JSP.
XTags allows the developer to work with multiple JSPs, custom tags, within a single JSP.
XTags is currently built on a DOM4J foundation (http://DOM4J.org).

4.7.4.11.1 XTags – Servlet (org.apache.taglibs.xtags.servlet)

Contains the XPathServlet, which outputs the value of an XPath expression of an XML
document.

Class Description
XpathServlet A Servlet to display the result of an XPath expression as XML

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 115

4.7.4.11.2 XTags – Util (org.apache.taglibs.xtags.util)

This tag library contains a collection of collections, utility and helper classes.

Class Description
JspHelper A collection of helper methods for JSP tag implementors.

JspVariableContext A Servlet to display the result of an XPath expression as XML.

StringHelper A Helper class of useful String methods.

URLHelper Helper methods for creating URLs that can handle relative or absolute URIs or full URLs.

4.7.4.11.3 XTags – XPath (org.apache.taglibs.xtags.xpath)

JSP Custom tags for working with XML via XPath for navigating, processing and
transforming XML documents using XPath expressions, navigation, iteration and XSLT
stylesheets.

Interface Description
ContextNodeTag An abstract base class that represents a context node on which XPath expressions can be

evaluated.

Class Description
AbstractBodyTag Abstract base class for BodyTag implementations.

AbstractTag A tag that performs an XPath expression on the current context Node.

AddTag The add tag parses it's body (as an XML fragment) and appends the contents to the
current node.

ApplyTemplatesTag The body of this tag defines a stylesheet that is implemented via calling a JSP include.

AttributesTag Adds an XML attribute to the parent element tag like the <xsl:attribute> tag.

BodyAction An Action that tells the Stylesheet tag which template body to execute.

BreakTag Causes the current iteration to be terminated rather like the Java 'break' statement.

ChooseTag Behaves like the equivalent XSLT tag, <xsl: Choose> is used to filter out conditions of an
XML document

ContextTag Changes the current context for tags used inside its body.

CopyOfTag Performs a copy-of operation like the XSLT tag.

CopyTag Performs a copy operation like the XSLT tag - a shallow copy.

ElementTag Produce an XML element that can contain other attributes or elements like the
<xsl:element> tag.

ForEachTag Performs iteration over the results of an XPath expression on an XML document.

ForEachTagExtraInfo The extra info for each tag.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 116

IfTag Behaves like the equivalent XSLT tag.

JspAction An Action that includes a piece of JSP.

JspCopyOfAction Outputs the given Node to the current JSP output.

JspValueOfAction Outputs the string-value of the given Node (as defined by the XPath specification) to the
current JSP output.

OtherwiseTag Behaves like the equivalent XSLT tag.

OutputTag Specifies the output format of the XML.

ParseTag Parses its body as an XML Document and defines a variable.

ParseTagExtraInfo The extra info for the XML tag.

ReflectionAction Calls a void method on an instance when the action is initiated.

RemoveTag Removes nodes from the current document that matches the given XPath expression.

ReplaceTag Parses it's body (as an XML fragment) and replaces the contents to the current node with
this new XML fragment.

StylesheetTag The body of this tag defines a stylesheet that is implemented via calling a JSP include.

StylesheetValueOfAction Creates the string-value of the given Node (as defined by the XPath specification) and
passes it to the parent StylesheetTag for output at the correct time.

TagHelper A number of helper methods.

TemplateTag The body of this tag defines a stylesheet that is implemented via calling a JSP include.

ValueOfTag Performs an XPath expression on the current context Node.

VariableTag A tag, which defines a variable from an XPath expression.

VariableTagExtraInfo The extra info for the variable tag.

WhenTag Behaves like the equivalent XSLT tag.

4.7.4.11.4 XTags – XSLT (org.apache.taglibs.xtags.xslt)

JSP Custom tags for working with XSLT.

Interface Description
ParameterAcceptingTag A tag that is capable of accepting a parameter value.

Class Description
ParamTag A tag that declares a parameter for use in an XSLT stylesheet.

StyleTag A tag that performs an XSLT transformation on a given XML document.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 117

4.7.5 References

• The Jakarta Taglibs Project

 http://jakarta.apache.org/taglibs/

• Core Servlets and JavaServer Pages – Chapter 14: Creating Custom Tag Libraries

http://developer.java.sun.com/developer/Books/javaserverpages/cservletsjsp/cha
pter14.pdf

• The Struts Framework Project

http://jakarta.apache.org/struts

• Struts Framework API (Version 1.0)3

 http://jakarta.apache.org/struts/api-1.0/index.html

• XTags is built on DOM4J

http://DOM4J.org

3 Version 1.0.1 is a patch release for version 1.0.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 118

4.8 Scheduler

4.8.1 Purpose

In the past FSA applications have had different scheduling needs, which had been
accomplished using different methods. FSA has identified a need to launch email and
FTP programs within the Java Virtual Machine (JVM) environment at specific times once
or several times a month to broadcast data or messages. In addition, there is a need to
launch database maintenance programs from within Java classes at specific times to
retrieve data out of databases.

To accomplish these tasks, FSA has had to rely on Unix commands to launch Unix scripts
that integrate the different functionalities with the Java Virtual Machine. This process has
been clumsy and unreliable. The FSA Java Scheduler allows developers to set up
scheduled launches of Java classes at specified times, just like Unix cron. In fact the
syntax was purposely developed to be similar to Unix cron so that administrators and
developers would be familiar with it.

As with all RCS components, a common RCS logging and exception handling framework
is provided that enhances the reliability and serviceability of the particular framework.
These frameworks have a well-documented test and performance strategy that ensures
their availability.

4.8.2 System Overview

The ability to schedule a task is critical to most Java enterprise applications. In most
cases, Java business applications have a need to schedule a batch task during periods of
low use or maintenance. To accomplish this, most Java developers have had to rely on
techniques outside of the Java Virtual Machine programming paradigm to achieve stated
goals. This forces the developer to rely on API’s that the Java engine has no control over.
Java cannot typically respond to whether the task was accomplished or not, without
significant code enhancements. These requirements bring about a need for a reliable
Scheduling framework that is easy to implement. The FSA Scheduling framework is
composed of an open-source timing framework called JDring, as well as, other RCS
frameworks that provide Logging, Exception handling, and XML document parsing –
that serve as a layered foundation to RCS customization.

JDring is an open source Java package, which provides an alarm scheduling system.
JDring is well known among the open source developers and comes highly
recommended for scheduling tasks.

The scheduling framework is built on these open source frameworks and provides the
FSA developer with the ability to program a scheduled task or schedule a task via an
XML document that can be reread anytime.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 119

4.8.3 Design Considerations

4.8.3.1 Assumptions and Dependencies

JDring v1.3.1 must be used with the Java Development kit 1.2.2, as it relies on the Java
Collections package provided with the JDK 1.2.2. This framework will function in a J2EE
application server environment. As the current production server for FSA is IBM
WebSphere 3.5.x, the framework will be compiled using its required JDK version 1.2.2.
Compatibility is assumed with the current JavaServer Pages (1.1), Java Servlet (2.2), Java
Messaging Service (1.0.1), and Java Database Connectivity (2.0) specifications for this
server. This framework is fully tested on Sun Solaris 2.6 and HP-UX 11.0. While this
framework will be built using these product versions, it will be built in accordance with
J2EE standards and to support product upgrades.

4.8.3.2 Goals and Guidelines

The goal of this development is to provide a simple and robust Scheduling Framework
that can be leveraged by FSA application teams developing applications in a Java
environment, or more specifically WebSphere. It is critical that the ITA Scheduling
Framework be reliable and easy to debug if problems occur. To this end the RCS Logging
and Exception Handling Framework will be used to document any errors that the
Scheduling Framework encounters.

Another goal of this framework is to standardize FSA applications on a single Scheduling
method that allows all Java Based applications use to schedule tasks. This helps with
support and maintenance of FSA applications.

A final goal is to ensure that the performance of the Scheduler Framework does not
hinder the performance of the application using it. Part of the release process of RCS
Frameworks is to ensure that performance is not an issue. This is accomplished through
performance testing and documenting performance results.

4.8.3.3 Development Methods

Development of this framework relies on general object-oriented software development
techniques, which are specified in any standard text on the Java programming language.
Given the facility of its class and relationship patterns, no object oriented modeling tool
or methodology was specifically used in its design. However, the resulting class files
have been documented with standard class diagrams and sequence diagrams using
Rational Rose in order to illustrate its structure more readily. These diagrams will prove
useful to developers unfamiliar with this framework.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 120

4.8.4 System Architecture

The ITA Scheduler Framework has been designed to manage a large quantity of
scheduled tasks and alarms. The ITA Scheduler Framework is intended to trigger events
when alarms' date and time match the current ones. Alarms are added dynamically in
any order and can be one time or repetitive (i.e., rescheduled when matched). Two FSA
Scheduler classes have been defined to incorporate the FSA Scheduler Framework. They
are FSASchedule and FSAScheduleEvent.

4.8.4.1 Subsystem Architecture: FSASchedule

FSASchedule is a class that inherits from and adds functionality to the JDring scheduler
framework. The FSASchedule class has the following features:
� Ability to add alarms via inline code that will launch tasks at specified dates and

times. The AddAlarm methods support passing a java.util.date argument, cron
like argument (min, day of week, day of month, month, year), an integer argument
(number of seconds to delay) or a FSAScheduleEntry argument, which is used for
XML parsing

� Ability to add alarms via XML documentation that will launch tasks at specified

dates and times

� Boolean function that will check if an alarm exists within a specific FSASchedule

object

� Ability to retrieve and inspect all alarms set

� Ability to delete a particular alarm or all alarms

4.8.4.2 Subsystem Architecture: FSAScheduleEntry

The FSAScheduleEntry class is used in partnership with the RCS XMLHelper framework
to accomplish the XML document parsing. Using the XMLHelper framework, a
developer can instantiate an instance of the FSAScheduleEntry class from an XML
document and pass it to the FSASchedule class via the addAlarms methods.

4.8.4.3 Subsystem Architecture: ITA RCS XMLHelper Framework

The XMLHelper framework is an XML document-parsing framework that allows
developers to use DOM, SAX or JAXB-like parsing. This framework has been added to
the scheduler framework to allow the framework to read in new scheduling and data
parameters from an XML document.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 121

4.8.4.4 SubSystem Architecture: ITA RCS Logging and Exception Handling Framework

The ITA Logging and Exception Handling frameworks have been added to the scheduler
framework to enhance debugging and tracing abilities. This will enable the capability to
isolate problems that may occur within the framework.

4.8.5 Detailed System Design

4.8.5.1 FSASchedule

The FSASchedule class is a wrapper class that inherits directly from the AlarmManager
class of the JDring Framework. The FSASchedule class provides simplified interfaces to
the JDring framework as well as adding XML parsing capabilities. The FSASchedule
class accomplishes the scheduling functionality by setting up an event listener. This
event listener has an action associated with it. When the time/date arrives, then the
action is executed. The FSASchedule class has the capability to launch any public method
of another class in the scheduled future, as long as that class is in the current Classpath.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 122

4.8.5.1.1 FSASchedule

Class Name: FSASchedule
Component: Scheduler
Description: Public class
Package: gov.ed. fsa.ita.schedule
Superclass: fr.dyade.jdring.AlarmManager

Con/Destructors Arguments
(Type, Name)

Description

FSASchedule none Constructor

Methods Arguments
(Type, Name)

Valid Responses
(Return Type,

Exceptions
Thrown)

Description

Public:
addAlarm (FSAScheduleEntry E)

FSAScheduleEntry
throws
FSAException

This method takes a
FSAScheduleEntry object and
adds the alarm to the schedule.

configureXML (String, string) FSAScheduleEntry
throws
FSAException

 This method takes two string
arguments. The first argument
specifies the translation class-
mapping file for the XML parser.
The second argument specifies
the file that holds actual class
element values that will be
marshaled. The purpose of the
method is to instantiate
FSASchedule from an XML
document.

containsAlarm (FSAScheduleEntry E) boolean

This method takes a
FSAScheduleEntry object and
checks to see if that alarm is
present in the current
FSASchedule object.

getAllAlarms none java.util.List This method returns a List of all
scheduled alarms.

launchMethod (FSAScheduleEntry E) FSAScheduleEntry
throws
FSAException

This method takes a
FSAScheduleEntry object and
launches the specified class and
method.

removeAllAlarms none void This method removes all
specified alarms within a
FSASchedule Object.

removeAlarm (FSAScheduleEntry E) boolean

This method takes a
FSAScheduleEntry object and
removes the specified alarm.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 123

4.8.5.2 FSAScheduleEvent

The RCS XMLHelper parsing framework is used to marshall almost any bean-like Java
object to and from XML format. The FSASchedule class uses FSAXMLHelper to parse
two documents (mapping.xml and schedule.xml) to instantiate an instance of
FSAScheduleEvent. The mapping.xml document is used to define class descriptors and
field descriptors of the FSAScheduleEntry to the FSASchedule framework. In other
words, the attributes of the variables that are to be used by FSAScheduleEntry are
defined within the mapping.xml document.

The mapping.xml document will define if the FSAScheduleEntry variables are loaded
directly from the values defined in schedule.xml or the values get set via methods. The
mapping.xml document should not have to be modified by the users of the FSASchedule
framework. The Schedule XML document is the primary document that developers use
to pass alarm entries into the Schedule Framework.

The Schedule.XML document holds the values of the variables used to fill out an
FSAScheduleEntry class. The FSAScheduleEvent class is a Java Data Bean that represents
the XML documents that were parsed by the FSASchedule configureXML method. Once
the FSASchedule framework parses the XML document schedule.xml, and instantiates an
FSAScheduleEntry class, the framework schedules the alarm with FSASchedule.

4.8.5.2.1 FSAScheduleEntry

Class Name: FSAScheduleEntry
Component: Scheduler
Description: Public class
Package: gov.ed. fsa.ita.schedule
Superclass: Object

Con/Destructors Arguments
(Type, Name)

Description

FSAScheduleEntry none Constructor

Attribute Type Description

Public:
m_classname java.lang.String String variable to specify name of the class Object.
m_dayofmonth int Integer variable that is used to specify day of

month.
m_dayofweek int Integer variable that is used to specify day of week.
m_delay int Integer variable that is used to delay before alarm

is signaled.
m_hour int Integer variable that is used to specify hour.
m_isRepetitive boolean Boolean variable that is used to specify whether

delay should be repeated.
m_methodArgs Object[] Object array that will hold method arguments.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 124

Attribute Type Description

m_methodArgType Class[] Class array that will hold method arguments types.
m_methodname java.lang.String String that will hold method name.
m_minute int Integer variable that is used to specify minute.
m_month int Integer variable that is used to specify month.
m_yr int Integer variable that is used to specify year.
postedAlarm fr.dyade.jdring.AlarmEntry AlarmEntry variable that is super.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 125

4.8.6 Class Diagrams

FSASchedule Class

AlarmManager

debug : boolean

debug(arg0 : String) : void
addAlarm(arg0 : Date, arg1 : AlarmListener) : AlarmEntry
addAlarm(arg0 : int, arg1 : boolean, arg2 : AlarmListener) : AlarmEntry
addAlarm(arg0 : int, arg1 : int, arg2 : int, arg3 : int, arg4 : int, arg5 : int, arg6 : AlarmListener) : AlarmEntry
addAlarm(arg0 : AlarmEntry) : void
removeAlarm(arg0 : AlarmEntry) : boolean
removeAllAlarms() : void
containsAlarm(arg0 : AlarmEntry) : boolean
getAllAlarms() : List
notifyListeners() : void
finalize() : void
AlarmManager(arg0 : boolean, arg1 : String)
AlarmManager()

(from jdring)

FSASchedule

FSASchedule()
addAlarm(Sentry : final FSAScheduleEntry) : FSAScheduleEntry
configureXML(mapXML : String, scheduleXML : String) : FSAScheduleEntry
containsAlarm(cSentry : FSAScheduleEntry) : boolean
getAllAlarms() : java.util.List
launchMethod(Sent : FSAScheduleEntry) : void
removeAlarm(rSentry : FSAScheduleEntry) : boolean
removeAllAlarms() : void

(from schedule)

FSAScheduleEntry

m_minute : int
m_hour : int
m_dayofmonth : int
m_dayofweek : int
m_yr : int
m_month : int
m_delay : int
m_isRepetitive : boolean

FSAScheduleEntry()
setm_methodArgType(str : java.lang.String) : void

(from schedule)

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 126

4.8.7 Sequence Diagrams

This sequence illustrates the interaction between a client object and FSASchedule object to
parse an XML document and set a scheduled entry.

 :
FSASchedule

 : FSAXMLHelper :
AlarmManager

 : Mapping : UnmarshallerClient

1. FSASchedule()

2. configureXML(String, String)

1.1. AlarmManager()

2.1. FSAXMLHelper()

2.2. parse(String, String)

2.2.1. Mapping()

2.2.2. loadMapping(String)

2.2.3. Unmarshaller(Mapping)

2.0 Call configureXML with
the location of the mapping
xml document and the
schedule xml document

2.2 configureXML calls parse
and builds a new mapping
object and then loads the
mapping xml document.

The unmarshaller reads the
schedule xml document and
builds a FSAScheduleEntry
object

2.3 The FSAScheduleEntry
instance is passed to the
FSASchedule instance via
the addAlarm method

1.0 Build new instance of
FSASchedule

2.3. addAlarm(final FSAScheduleEntry)

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 127

4.8.8 Reference

• JDring Schedule Framework

http://webtools.dyade.fr/jdring

• Castor XML Parsing Framework

http://www.castor.org/xml-mapping.html

• Sun Java Development Kit 1.2.2

http://java.sun.com

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 128

4.8.9 Jar Files

The following Jars files are part of the ITA Scheduler Framework.
1. JDRing Jar Files

• jdring.jar

2. XMLHelper

• Xmlhelper.jar

3. FSASchedule

• FSASchedule.3.0.jar

4. Logging Jar Files
• Jakarta-oro-2.0.1
• Jdom-B6
• Protomatter-1-1-5.jar
• Utility.jar
• Xerces.jar
• Xml.jar

5. XML Document ‘s
• Rcs.xml (Logging)
• Mapping.xml (Scheduler)
• Schedule.xml (Scheduler)

4.8.10 FSASchedule Example

public static void main(java.lang.String[] args) {
 FSASchedule timer = new FSASchedule();

 //Add a new FSASchedule Object
 timer.addAlarm(55, 17, -1, -1, -1, -1, "gov.ed.fsa.ita.email.example.SMTPTester","main");
 //Add a FSAScheduleEntry to launch SMTPTester main at 17:55 every day.
 timer.configureXML(d:\www\map.xml,d:\www\schedule.xml);
 //Add another FSAScheduleEntry parsing a XML document.
}

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 129

4.9 Web Services

4.9.1 Overview

Web Services are self-contained, self-describing, modular applications that can be
published, located, and invoked across the Web. The invocation is done using a set of
low overhead, open standard network and application protocols (e.g., UDDI, SOAP,
XML), which will be discussed in more depth later in this document.

Web Services are loosely coupled services. The Web Services programming model is a
service-oriented model based on the exchange of documents as opposed to arguments.
The inputs, outputs, and return codes are all typically XML documents. By focusing
solely on these document-based messages as interfaces, Web Services are completely
language, platform, and object-model independent.

Web Services perform functions that range from simple requests to complicated business
processes. At a minimum, a Web Service must provide information regarding available
interfaces, the requirements on incoming messages, and the specifications of outbound
messages. The implementation details of the services are completely masked from the
external world.

The Web Services architecture is composed of many parts which are discussed in the
following sections. The ITA team will implement the Single Object Access Protocol
(SOAP) component of the Web Services architecture. The design for this implementation
is discussed in section 4.9.3.3. The SOAP implementation will be used to transfer data
and execute functionality between applications. Specifically, the implementation will be
used by the Enterprise Architecture Integration (EAI) team to transfer data between
financial institutions and FSA applications.

4.9.2 Benefits

Due to the loose coupling of services, there are a few key benefits to Web Services that are
not applicable for client-server and other net-centric computing alternatives:

� The most prominent advantage of Web Services is they provide a straightforward,

low entry cost mechanism for system-to-system interaction between organizations.
The focus on standardization and agreement at the specification level supplies an
opportunity to reduce costs and improve efficiencies across organizational
boundaries

� Web Services are based on a set of industry standard protocols and technologies

available on all platforms; therefore there is no dependency on any particular
operating system, programming language, object-model protocol, or database

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 130

� The ability to “wrap” existing components/applications with Web Services

technology and deploy them as Web Services, supports the reuse and extension of
existing components and applications. This allows organizations to leverage the
development investment in existing applications as well as reduce the time to
deliver Web services for their organization, partners, and customers

� The elimination of a tightly coupled remote-procedure-call implementation

provides the potential for Web Services to deliver standalone business functions
that require a minimal amount of shared understanding in order to interoperate.
The only information that must be shared is the SOAP XML documents which are
easily and quickly created

� Web Services enables a distributed architecture that is data/service oriented as

opposed to today’s presentation-oriented model. Web Services provide an
organization with an infrastructure that extends to deliver rich mobile applications
by packaging information in a manner that allows local capabilities of the channel
to be better leveraged

4.9.3 Technical Architecture

There are three main components to a web service: Service providers, service brokers,
and service requestors. Service providers provide the services and maintain a registry
that makes those services available. Service brokers assist the communication between
the service providers and service requestors. Service requestors work with service
brokers to discover web services and then invoke those services to create applications.

There are three main web services operations: Publish/unpublish, find, and bind.
Publishing and unpublishing involves advertising services to a registry or removing
those entries. The service provider contacts the service broker to publish or unpublish a
service. The find operation is where service requestors describe the kinds of services they
are looking for, and the service brokers deliver the results that best match the request.
During the bind operation, the service requestor and the service provider negotiate so the
requestor can access and invoke the services of the provider.

The following diagram depicts the Web Services Architecture:

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 131

Figure 1: Web Services Technical Architecture

4.9.3.1 WSDL

Web Services Description Language (WSDL) is an XML document used to define web
services and the set of operations within each service that the server supports. The
WSDL file also describes the format that the client must follow in requesting an
operation. Since the WSDL file sets up requirements for both the server and the client,
this file is akin to a contract between the two. The server agrees to provide certain
services only if the client sends a property formatted SOAP XML request.

In a WSDL file, there are five primary elements used in defining the network service. The
five elements are as follows:

• <types> element – defines the various data types used in exchanging messages

• <message> element – describes the messages being communicated

• <portType> element – identifies a set of operations and the messages involved

with each of those operations

• <binding> element – specifies the protocol details for various service
operations and describes how to map the abstract content of these messages
into a concrete format

• <service> element – groups a set of related ports together

Transport: HTTP, SMTP, FTP, MQ ...

XML Messaging: SOAP

Service Description: WSDL

Publication & Discovery: UDDI

Application 1

Application 2

Application 3

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 132

The following is an example of a WSDL file:

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="FooSample"
targetNamespace="http://tempuri.org/wsdl/"
xmlns:wsdlns="http://tempuri.org/wsdl/"
xmlns:typens="http://tempuri.org/xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:stk="http://schemas.microsoft.com/soap-toolkit/wsdl-extension"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://tempuri.org/xsd"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
elementFormDefault="qualified" >
</schema>
</types>

<message name="Simple.foo">
<part name="arg" type="xsd:int"/>
</message>

<message name="Simple.fooResponse">
<part name="result" type="xsd:int"/>
</message>

<portType name="SimplePortType">
<operation name="foo" parameterOrder="arg" >
<input message="wsdlns:Simple.foo"/>
<output message="wsdlns:Simple.fooResponse"/>
</operation>
</portType>

<binding name="SimpleBinding" type="wsdlns:SimplePortType">
<stk:binding preferredEncoding="UTF-8" />
<soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="foo">
<soap:operation
soapAction="http://tempuri.org/action/Simple.foo"/>
<input>
<soap:body use="encoded" namespace="http://tempuri.org/message/"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</input>
<output>
<soap:body use="encoded" namespace="http://tempuri.org/message/"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</output>
</operation>

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 133

</binding>

<service name="FOOSAMPLEService">
<port name="SimplePort" binding="wsdlns:SimpleBinding">
<soap:address location="http://carlos:8080/FooSample/FooSample.asp"/>
</port>
</service>
</definitions>

Figure 2. Sample WSDL file

4.9.3.2 UDDI

Universal Description, Discovery and Integration (UDDI) is a specification for
information registries of web services, and hence part of the web services framework.
UDDI is designed to provide a searchable directory of businesses and their web services.
Each business registered with UDDI lists all its services and gives each of these services a
type. This service type has a unique identifier and comes from a pool of well-known
service types that are registered with UDDI. By having a pool of well-known service
types, UDDI makes it possible to find out how to do electronic business with an
organization. This is the primary advantage UDDI has compared to other Web-based
business directories.

4.9.3.3 SOAP

4.9.3.3.1 Introduction

The Simple Object Access Protocol (SOAP) is a protocol based on the idea that a
distributed architecture needs to exchange information. This protocol is lightweight,
requiring a minimal amount of overhead and uses HTTP as the communication protocol.
This allows the application to overcome challenging issues like firewalls (since firewalls
usually allows HTTP transmissions) and avoid from having extraneous sockets listening
on oddly numbered ports.

4.9.3.3.2 System Overview

There are three basic components to the SOAP specification: the SOAP envelope, a set of
encoding rules, and a means of interaction between request and response (the
invocation). The SOAP envelope supplies information about the message that is being
encoded, including data relating to the recipient and sender, as well as details about the
message itself. Before an application goes forward with processing a message, the
application can determine information about a message, including whether it will be able
to process the message. Distinct from the situation of standard XML-RPC (Remote
Procedure Call) calls, SOAP’s interpretation occurs in order to determine information
about the message. A typical SOAP message can also include the encoding style, which
assists the recipient in interpreting the message.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 134

SOAP also brings a simple means of encoding user-defined datatypes. In remote
procedure calls, encoding can only occur for a predefined set of datatypes: Those that are
supported by an XML-RPC toolkit. Encoding other types requires modifying the RPC
server and clients themselves. For SOAP, however, XML schemas can be used to easily
specify new datatypes, and those new types can be represented in XML as part of a SOAP
payload. Because of this integration with XML Schema, it is possible to encode any
datatype in a SOAP message that can be logically described in an XML schema.

The SOAP invocation works by storing the invocation as a resident in memory. The
invocation allows developers to set the target of the call, the method to invoke, the
encoding style, and the parameters. It is more flexible than the XML-RPC methodology,
whereby various parameters may be set explicitly, which are determined implicitly in
XML-RPC.

4.9.4 Design Considerations

4.9.4.1 Assumptions and Dependencies

It is assumed that the SOAP framework functions in a J2EE application server
environment. As the current production server for FSA is IBM’s WAS v. 3.5, the
framework is compiled using its required JDK version 1.2.2. It is assumed to be
compatible with JavaServer Pages (1.1) and Java Servlet (2.2) specifications for this server.
This framework is fully tested on the Sun Solaris 2.6 and HP-UX 11.0 operating systems.
While this framework will be built using these product versions, it will be built in
accordance with J2EE standards and to support product upgrades.

4.9.4.2 Goals and Guidelines

The goal of the SOAP framework is to provide a simple and robust framework that can
be applied by FSA application teams, developing application in a Java environment. The
SOAP framework implements the SOAP protocol put forth by the World Wide Web
Consortium (W3C). The framework will abstract the syntax of the SOAP protocol from
application developers.

The SOAP component of the web services framework is built using the Apache SOAP
implementation. This implementation will be used for the following reasons:

• Apache SOAP is compatible with JDK 1.2.2

• Apache is a well-known name and its frameworks have been used before

• Apache SOAP is open source and is easily modified to suit an application’s

needs

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 135

• Apache Axis is the next release of Apache SOAP which contains additional
features, and the code can be easily upgraded

4.9.4.3 Development Methods

This framework will be developed using general object-oriented software development
techniques. The standard sequence diagram is provided in this document. This
document assists developers who are unfamiliar with this framework.

4.9.5 System Architecture

The SOAP framework provides the following services:
• SOAP Client – creates the SOAP message, sends it and receives the response

from the service called

• SOAP Server – interprets the message from a SOAP Client, provides the service,

and sends the message back to the SOAP Client

The following diagram depicts the technical architecture of the SOAP framework:

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 136

Client Application
(COM client or CORBA

client or Java RMI client)

SOAP Library XML Parser

SOAP Listener

HTTP Server Mapping
Tool

Server Application
(COM object or CORBA

object or RMI object)

SOAP Library

XML Parser

Proxy Object

Web Services
Description
Language

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 137

4.9.6 Sequence Diagram

SOAP Client RPCRouterServlet Call ServiceManager RPCRouter

Deployment
Descriptor

JVM SOAP Mapping
Registry

RPCMessage

1: doPost(Req) 2: extractCallFromEnvelope(Env)
3: extractFromEnvelope(Env)

4: extractFromEnvelope(Env)
5: unmarshall

6: return(call)

7: return(call)

8: query(targetObjectUri)
9: new()

10: return(DeploymentDescriptor)

11: getProviderClass

12: return(Class)

13: Dynamically load this class

14: return(TargetObject)

15: invoke(Call, Target Object)

16: return(Response)

1. The SOAP Client does a
post to the servlet passing in
the request object.
2. The servlet calls the
router to extract the Call
object from the SOAP
envelope.
3. The router extracts the
call from the SOAP
envelope.
4. The router extracts the
RPC message from the
envelope.
5. Builds a soap mapping
registry using the mappings
defined in the dd.xml.
Then creates a new call
object and adds the soap
mapping registry to it.
8. Retrieve the target
object uri from the service
manager.
9. Create a new
deployment descriptor
object.
11. Get the provider class
from the deployment
descriptor.
13. Dynamically load the
provider class into the Java
Virtual Machine.
14. Returns the target
object from the JVM.
15. The servlet call the
router to invoke the service
using the Call and Target
Objects obtained in the
previous steps.
16. The Response object is
return from the router to the
servet of the client and
displayed.

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 138

4.9.7 References

� General Web Services Website

https://www.webservices.org

� IBM Web Services Website

http://www-106.ibm.com/developerworks/webservices/

� Apache SOAP Toolkit Website

http://xml.apache.org/soap/index.html

� UDDI Website

http://www.uddi.org/

ITA Release 3.0

 Technical Specification

Version 3.0 69 – 69.1.3 Page 139

Appendix A – ITA RCS R2.0 and FSA Applications Matrix
The following matrix details the current and potential usage of RCS services by FSA’s
applications.

 In Use High Opportunity Medium Opportunity Low Opportunity
Web Conversation Portals Schools Portal, EIP FAFSA, eCB, IFAP
Object Pooling EAI Portals

Session eAudit, FAFSA
Portals, Schools Portal,
eCB, EIP

FTP Students & FP Portals eCB, COD

Configuration
eAudit, Portals,
FAFSA

Schools Portal, EIP,
IFAP eCB

XML Helper COD
Web Services EAI (SOAP)

JSP Tag Library
eAudit, Portals,
Schools Portal FAFSA, eCB, EIP, IFAP

Scheduler Students & FP Portals
Portals, Schools Portal,
FAFSA eCB, EIP, IFAP

